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Digital Signal Processing in Measurements 

 

 
4.1 Sampling, quantization and next signal 

reconstruction 

The technical world is becoming more and more 

digital because digital signals are very convenient for 

information processing. However, most physical 

phenomena are analog and the sensors measure 

analogue quantities. For that reason, the digital signal 

processing DSP is often realized in the following 

sequence: conversion of the analogue signal to digital 

form  digital signal processing  conversion of the 

digital signal back to the analogue one. The conversion 

is realized by the analog-to-digital converters ADC 

while the reverse process is realized by digital to 

analog converters DAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.1 

The analog signal and its conversion to the discrete form. 

 

The analogue signals are of continuous time – the 

value of such signal is determined in every instant of 

time. An example of the analogue signal is presented in 

Figure 4.1a. The conversion of the analogue signal x(t) 

to the digital form is realized in such a way that in 

assumed moment of time the value of the signal x(n) is 

determined and represented by a number. We can say 

that the digital signal is determined in discrete time, 

which means that the value of the signal is known only 

in selected moments. Usually the discrete time is 

realized by collecting the samples of the analogue 

signal at the constant interval called the period of 

sampling Ts (Figure 4.1b). 

The process of collection of the samples is called the 

sampling process of analog signals. The frequency 

fs=1/Ts is called the sampling frequency and it is 

described in Hz or sps – samples per second. The 

process of determination of the digital value of the 

samples is called the quantization of the signals. The 

sampling is the digitization of the time, while the 

quantization is the digitization of the signal value.  

As the result of sampling the time on the axis x is 

substituted by the number (index) n and every sample 

is described by its index n. The analog signal described 

by the equation x(t) = Xm sint is converted to the 

signal x(n) = Xn (where Xm is the magnitude of 

analogue signal while the Xn is the value of the signal 

of the index n). 

The conversion from the index n to the time t is 

obvious because index n indicates the time with the 

period Ts = 1/fs. For example, if we are sampling the 

signal of the frequency 50 Hz and we would like to 

obtain the discrete signal represented by 64 samples per 

the period of signal
1
 the sampling frequency should be 

fs = 3200 Hz (and period of sampling is Ts = 312.5  s).  

Thus the n = 50 corresponds with the time 50  

312.5 s = 15.625 ms. If we would like to have 128 

samples per period of the measured signal then the 

sampling frequency should be two-times larger (6400 

Hz in our case). 

Important question is: how many samples per period 

is the best? Simple answer is: as much as possible 

because in such case the analogue signal is the best 

represented by digital one and further analogue signal 

reconstruction is more exact. But as more samples per 

period (as higher speed of sampling) as more expensive 

is digital to analog converter. Therefore the more 

                                                
1
 It is advantageous to have 2

n
 samples per period – this subject is 

discussed later. 
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appropriate answer to above question is: sufficient 

number of samples. 

The sufficient number of samples describes the 

fundamental law of DSP – the Nyquist-Shannon 

theorem
2
: the sampling frequency should be at least 

two times larger than the highest frequency component 

of the sampled signal (two times larger than the 

bandwidth w).  

Thus on other words we can say that the number of 

samples per period should exceed two
3
. Indeed 

although sampling theorem has reach mathematical 

grounds we simply can note that by three points it is 

possible to draw only one sinusoid and therefore to 

correct reconstruct sampled signal it is sufficient to 

have only three point per period.  

It should be noted that in sampling theorem we say 

about the highest frequency component. It means that if 

we have distorted signal for example rectangular one 

then to correct describe this signal we should take into 

account sufficient large number of harmonics and the 

sampling frequency should be two times larger than the 

highest harmonic. 

The analog sinusoidal signal of the frequency fx can 

be by the equation: 
 

  m xx t X sin2 f t                     (4.1) 

 

and is represented by only one spectral line of the 

frequency fx (Figure 5). After sampling with the period 

Ts the same signal is described as 
 

m x sx( n ) X sin2 f nT                   (4.2) 

 

But because the sinusoid is identical with the period 

2  (sin = sin (  2k)) the equation (5.2) should be 

rewritten in the form 
 

 m x sx( n ) X sin 2 f nT 2k              (4.3) 

 

After introducing the value m = k/n we obtain 
 

 

m x s s

m x s s

k
x( n ) X sin2 f f nT

n

X sin2 f mf nT





 
   

 

 

            (4.4) 

                                                
2
 Shannon theorem (sampling theorem) is also known as Nyquist-

Shannon theorem. Before the Shannon the sampling theorem was 

analyzed by mathematicians Whittaker and Ferrar. Independently 

similar theorem was introduced by a Russian scientist Kotelnikov. 

Therefore the Shannon theorem is sometimes also called as the WKS 
sampling theorem (WKS – Whittaker, Kotelnikov, Shannon). 
3
 When CD technology started the sampling frequency was selected 

as 44.1 kHz because human ear is able to detect the sound of 

frequency to about 20 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.2 

The spectrum line of the sinusoidal signal and its replication after 

sampling. 

 

Thus after sampling of the signal of frequency fx at 

the output of analog to digital converter appear the 

infinity number of components fa  mfs  - component 

representing input signal and mirrored around signals 

with distance fs  (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.3 

The signal of the bandwidth w and its replication after sampling. 

 

Similarly, if instead of one sinusoidal signal we have 

the signals within a bandwidth w (Figure 4.3) after 

sampling we obtain the multiplication of this 

bandwidths with the frequency fs. We obtain a lot of 

signals of the frequencies w  mfs.  

The signal presented in Figure 4.3 was sampled with 

the frequency fs > 2w (according to the Nyquist rule). 

Thus in the frequency range 0 < f < w the signals 

before and after sampling are the same – it is possible 

to remove the other signals of the frequency f > w with 

a filter. But if the sampling frequency is smaller than 

2w the duplicated signals are covered mutually and in 

the frequency range around the sampling frequency 

exist two signals of the same frequency (Figure 4.4). 
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We are not able to recognize which one is true. This 

effect is called aliasing.  

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.4 

The replication of the signals (aliasing) when the sampling frequency 

is too small. 
 

The aliasing effect in not only the mathematical 

problem because it exist and is very troublesome in 

practice. Figure 4.5 presents simply experiment – we 

perform spectral analysis of signal for sampling 

frequency 10 kHz. The testing range on the screen is 

half a sampling frequency – thus signal of 2.5 kHz 

appears exactly in the middle of the screen. But if we 

increase later the frequency of tested signal after 

exceeding 5 kHz this signal appears again as returning 

one. The signal corresponding with 7.5 kHz appears 

exactly in the same place as 2.5 kHz. Only the 

difference is that true signal is moving to the right 

when the frequency increases while false (alias) signal 

is moving to the left.
4
 

 

 

 
 

 

 

 

 

 

 
FIGURE 4.5 

Experimental detection of aliasing signal during spectral analysis. 
 

By analyzing Figures 4.3 and 4.4 we can say that 

sufficient condition to avoid an aliasing effect is to 

fulfill Nyquist rule. Indeed of we are sure that we have 

only tested signal such condition could be sufficient. 

But we know that in real word the useful signal is 

commonly accompanied by parasitic signals, for 

example noises and interferences. This parasitic signal 

can return as alias one. 
 

                                                
4
 But false 12.5 kHz behaves similar to 2.5 kHz and both signals are 

difficult to distinguish. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.6 

The same sampling result of various frequency signals. 

 

Figure 4.6 presents the possibility that we obtain due 

to aliasing the same result for signals of different 

frequencies. Let us consider following example. The 

sampling frequency used in CD technology is fs = 44.1 

kHz. According to the Nyquist theorem the sampling 

frequency is sufficiently high (more than two times 

larger than 20 kHz). However, if in the processed 

acoustic signal there is a parasitic signal of the 

frequency 45 kHz this signal is in analog technique not 

danger – it is inaudible (beyond the audibility of the 

human ear). But according to equation (4.4) after 

sampling the parasitic signal appears as fx – fs = 45 kHz 

– 44 kHz = 1 kHz. Thus, after sampling a new distorted 

very loud audible signal 1 kHz appears due to the 

aliasing.  

To avoid such ambiguity caused by aliasing effect 

before the analog to digital converter there should be 

introduced a special anti-alias lowpass filter with the 

cut-off frequency equal to the Nyquist frequency 

(Figure 4.7). The Nyquist frequency fN is half of the 

sampling rate fN = fs /2. The frequency bandwidth till 

fs/2 is often called as Nyquist band or Nyquist zone. 

The cut-off frequency of the anti-alias filter depends 

on the dynamics of the signal
5
. As was discussed in 

previous chapter the typical slope of the M
th
-order filter 

is M  10 dB/decade (or 6 dB/octave) If our sampled 

signal exhibits the dynamics of 100 dB (what is in the 

case of symphonic orchestra sound) then to limit this 

signal to decade bandwidth above w it is necessary to 

use a tenth order filter, which is rather difficult in 

                                                
5
 Take into account that as the bandwidth of the amplifier we assume 

the frequency range where the amplitude of the signal does not drop 

more than 3dB. Thus even outside the bandwidth there are signals 

with quite large amplitude.  
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practical realization. We can see that for large 

dynamics of the signal the filter should exhibit very 

large steepness of the frequency characteristic in the 

transition band. Therefore as the anti-alias filter often 

elliptical (Cauer) filters with large steepness of the 

frequency characteristic are used. But high-order filters 

with large steepness introduce phase distortion, which 

in the case of acoustic signals is unacceptable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.7 

The sampling of the signal with the anti-alias filter at the input. 

 

Figure 4.7 presents the principle of application of the 

anti-alias filter. According to the Nyquist theorem the 

sampling frequency fs should be two times larger than 

the bandwidth w. But if we use anti-alias filter for the 

full attenuation of the signal is necessary to include 

small margin (taking into account slope of the filter 

characteristic). For that reason it is safer to set the 

sampling frequency fs two times larger than the 

frequency when the anti-alias filter sufficiently 

attenuates the signals (thus the Nyquist frequency fs /2 

is slightly larger than the bandwidth w). 

For example in the CD audio system the sampling 

frequency was chosen as 44.1 kHz what measn that the 

Nyquist frequency is 22.05 kHz. Thus we have small 

margin for filter assuming that the human ear sensing 

border is about 16 kHz. 

Higher sampling frequency means less critical 

requirements of the filter performances. Such 

conclusion results in the technique of sampling called 

oversampling technique (Figure 4.8). This method is 

currently applied in high quality sound processing 

especially because on the market appeared sigma-delta 

AD converters with high sampling frequency. For 

example in SACD system introduced by Sony (SACD – 

Super Audio Compact Disc) the sampling frequency is 

2.82 MHz which means the oversampling factor K = 

64.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.8 

The digital to analog conversion with oversampling technique 

 

By applying the oversampling we can use the 

analogue anti-alias filter of lower order. After 

conversion to the digital signals we can use much better 

digital anti-alias filter and then the decimal filter 

recovering the lower sampling rate. The profit related 

to the application of the cheaper and less complicated 

anti-alias filter is at the expense of the necessity of 

application of the analogue-to-digital converter of 

higher sampling speed.  

It is also other important advantage of oversampling 

technique. The energy of noises is distributed in the 

whole bandwidth therefore as larger sampling 

frequency as lower noise level. If we next (after 

sampling) cut-off the frequency useful bandwidth we 

eliminate some part of noises. And decrease of noises 

in the useful bandwidth is crucial for AD conversion 

because the dynamics and resolution of this conversion 

is much better. 

Let us consider another case when we process the 

signal in the bandwidth 450 MHz – 460 MHz. Such 

case we can meet often in telecommunication signal 

transmission. Applying the sampling frequency 920 

MHz (according to the Nyquist theorem) seems to be 

extravagance. It is possible to reconstruct the sampling 

signal with modified the Nyquist rule: the sampling 

frequency should be at least two times larger than the 

bandwidth (not the largest frequency signal). In our 

case of the signals in bandwidth 450 MHz – 460 MHz it 

is sufficient to use sampling frequency 20 MHz instead 

of 920 MHz. This technique is called the 

undersampling technique (or sometimes band-pass 

sampling).  

In the quantization process to each sample a digital 

value is assigned, most often in the binary code. Figure 

4.9 presents the quantization with 2-bit resolution. In 2-
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bit quantization the converted value can be represented 

by four possible levels: 00, 01, 10 and 11. The value of 

the continuous signal is rounded to the nearest possible 

level of quantization – thus the maximal value of the 

quantization error is half of a quant. In our case of 2-bit 

quantization this error is equal to 12.5% of full value. It 

is obvious that the larger is the digital word 

representing the quantized value (as more bits are used) 

the better is the quality of quantization (lower 

quantization error and larger quantization dynamics)
6
. 

Table 4.1 presents the performances depending on the 

number of bits of various AD converters.  

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.9 

The quantization of the continuous signal with 2-bit resolution (the 

error of quantization is indicated with the grey color) 

 
TABLE 4.1 

The performances of the quantization process depending on the 

number of bits N (determined under assumption, that the range of the 

conversion is 0 – 2V). 

Number 
of bits 

N 

Quantization 
levels 2N 

Quantum 
value q 

[V] 

Resolution 
% FS 

 

8 256 8 000 0.39 

10 1 024 2 000 0.098 
12 4 096 500 0.024 

16 65 536 31 0.0015 

24 16 777 216 0.12 0.000006 

 

Figure 4.10 presents the example of the conversion 

with a 3-bit converter. The LSB (LSB – least significant 

bit) is the abbreviation assigned to the smallest quantity 

of converted value and for N-bit converter it is equal to 

the resolution 1/2
N
. On the other hand the smallest 

quantity of the measured value is one quantum q 

determined as the smallest part of the FS value (FS – 

full scale) 
 

N

FS
q

2
                                     (4.5) 

                                                
6
 But the larger is the number of bits the more expensive is the 

analogue-to-digital converter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.10 

The characteristic of quantization of the 3-bit ADC  

 

The resolution can be determined as 1/2
N
 100% and 

for the 8-bit converter the resolution is 100/2
8
= 

100/256 = 0.39%. From Figure 4.10 results that the 

quantization error is varying between 0 and q value. It 

is possible to decrease this error by shiftinjg the 

quantization steps by the q/2 value - thus the error of 

quantization is then varying between –q/2 and +q/2 

(Figure 4.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.11 

The modified characteristic of quantization of the 3-bit ADC  
 

According to the characteristic presented in Figure 

4.11 the error of quantization  is  q/2 and the 

probability distribution p() is uniform for all values of 

errors between –q/2 and +q/2 (Figure 4.12).  

 

 

00

01

01
10

01
01

01

10

10

11

11
11

11

10

01

00
00

01

10

11

tTs 5Ts 10Ts

 

q 2q 4q 6q 8q=FS

range
000

001

010

011

100

101

110

111

digital

word

q
LSB

range

q

quantisation error

 

q 2q 4q 6q 8q=FS
000

001

010

011

100

101

110

111

digital

word

range+q/2

quantization error

-q/2

analog

value

 



Handbook of Electrical Measurements                                                                                                     109 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.12 

The probability distribution of the error of quantization. 
 

The mean square value (rms value) of the error is: 
 

 
q / 2 q / 2

2 2

rms

q / 2 q / 2

1 q
p d d

q 12
     

 

      (4.6) 

 

The rms value is often described as the noise of 

quantization. The signal to noise ratio SNR is: 
 

N

N

q
2

rms signal 2 2
SNR 20log 20 log

rms noise q / 12

2
20 log 2 log

6

 

 
  

 
  (4.7) 

dBNSNR 76.102.6                     (4.8) 

 

The relationship (4.8) is determined in bandwidth 

from DC to fs/2. If the signal bandwidth w is less than 

fs/2 then the expression (4.8) can be modified to the 

form: 
 











w

f
NSNR s

2
log1076.102.6             (4.9) 

 

The expression (4.9) reflects the effect of noise 

reduction due to oversampling – for given signal 

bandwidth doubling of sampling frequency increases 

the SNR ratio by 3dB. 

The noises level is important for the dynamics of 

conversion. This dynamics can be calculated as the 

ratio of a signal 2
N
q to the resolution of quantization q 

 

N
q

q
dynamics

N

02.6
2

log20            (4.10) 

 

 The equation (4.10) is often expressed as “six dB 

per one bit”. For example, in acoustic signal processing 

it is assumed that the bandwidth is 20 kHz while 

dynamics is 100 dB. Thus the sampling frequency 

should be about 40 kHz and to obtain the dynamics 100 

dB the number of bits should be: 100/6.02=16.6. Thus 

to obtain correct dynamics of the audio signals the 

converter should be the 16-bit one. 
 

TABLE 4.2 

The performances of the quantization process depending on the 
number of bits N (determined under assumption, that the range of the 

conversion is 0 – 2V). 

Number 

of bits N 

Resolution 

% FS 

 

rms noises 

q / 12  

[V] 

Dynamics 

dB 

 

8 0.39 2 300 48 

10 0.098 580 60 

12 0.024 144 72 
16 0.0015 8.9 96 

24 0.000006 0.034 144 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
FIGURE 4.13 

Improvement of the resolution by dithering. 

 

We can improve the resolution of quantization in 

artificial way. If the changes of the signal are less than 

the level of quantization they are converted into pulses 

of the same value (Figure 4.13a). But if we add to the 

signal noise of the level small than level of quantization 

the maximum and minimum values of the signal can be 

detected as it is illustrated in Figure 4.13b. This 

technique is known as dithering. 

Beside described earlier conversion of the analog 

signal into digital code exist also other method of A/D 

conversion – for example conversion to number of 

pulses in dual slope converters (described later) and 

one-bit conversion used in sigma-delta converters (also 

described later). 

In one-bit conversion the output pulses are of the 

same magnitude –Uref - + Uref  and the value of 

converted analog signal is described by the half-pulse 

width. For zero input signal both halves have the same 

width and average value is zero. As the input signal 

increases the width of one half increases and average 

value also increases (Figure 4.14). It is principle of 
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delta modulation (or  modulation) – some kind of 

PWM modulation (pulse width modulation). 
 

 

 
 

 
 

 

 
 

 

 
 

 
FIGURE 4.14. 

The one-bit conversion. 
 

One-bit conversion realized by using of the sigma-

delta converter is closely related to oversampling 

principle. Its main advantages are simplicity of 

converter and large dynamics due to noise shaping. 

Therefore it is commonly used in multimedia 

applications but also in measurements.  
 

 
 

 

 
 

 

 
 

 

 
FIGURE 4.15. 

The one-bit conversion of sinusoidal signal (two speed of 

sampling). 

 

It is a question if one-bit conversion is really analog 

to digital conversion. Indeed we have sampling of the 

analog signal but the quantization is some kind of 

digital/analog hybrid. We can easy convert one-bit 

signal into multi-bit one by applying a decimation 

filter. But on the other hand the average value of this 

signal represents the analog value and the analog value 

can be easy reconstructed by applying lowpass filter. 

When we buy the AD converter the two main 

important parameters to choice are: sampling frequency 

and number of bits. It is not possible to select both 

parameters as high as possible because converter with 

high speed has poor resolution (number of bits) and the 

reverse. Therefore we usually look for compromise in 

selection of parameters taking into account following 

factors: 

- As higher sampling frequency as higher frequency 

bandwidth of converted signal (according to Nyquist 

rule). Thus the sampling frequency should be at least 

two times larger than the bandwidth. If we have 

distorted signal we should consider number of 

harmonics necessary to correct convert this signal. 

- As larger number of bits as better resolution and the 

same better accuracy of conversion. With 8-bit 

converter it is not possible to obtain accuracy better 

than 0.4%.  

- In some applications accuracy is less important than 

dynamics – for example in media processing. In such 

case important is the rule: 6 dB per bit. To convert 

signals with 100 dB dynamics it is necessary to use at 

least a 16-bit converter. 

As the result of quantization the value of the sampled 

signals is usually represented by the binary code. There 

are various systems of number encoding – generally we 

use two formats of the number: fixed point number 

(sometimes called integer number) and floating point 

number (called also real number). 

In the fixed point format every bit is in fixed position, 

starting from the largest one (MSB – most significant 

bit) and ending by the smallest one (LSB – least 

significant bit). In natural binary code called unsigned 

integer every bit represents the digit 2
N
. Thus the digit 

of the analog value with range FS is represented as by 

the dependence: 
 

 1 2 in

1 2 nx FS a 2 a 2 ... a 2                   (4.11) 

 

Thus for the FS = 1 V the number 0101 is 

corresponding to the: 
 

3125.00625.01125.0025.015.00 x V  
 
TABLE 4.3 

Various formats of the fixed point numbers. 

deci- 

mal 

unsigned 

integer 

offset 

binary 

sign and 

 magnitude 

two’s 

complement 

7 0111 1110 0111 0111 
6 0110 1101 0110 0110 

5 0101 1100 0101 0101 

4 0100 1011 0100 0100 
3 0011 1010 0011 0011 

2 0010 1001 0010 0010 

1 0001 1000 0001 0001 
0 0000 0111 1000 0000 

-1  0110 1001 1111 
-2  0101 1010 1110 

-3  0100 1011 1101 

-4  0011 1100 1100 
-5  0010 1101 1011 

-6  0001 1110 1010 

-7  0000 1111 1001 
 

The unsigned binary format cannot represent 

negative numbers. This problem can be solved by the 

offset binary format where the decimal value is shifted 

to obtain the negative number. The digit in this format 

is described by the equation 
 

analog input

digital output

-FS

FS
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 1 2 in

1 2 nx FS a 2 a 2 ... a 2 0.5           (4.12) 

 

Another format also enabling to represent the 

negative number is the format sign and magnitude. In 

this format the first left bit is reserved for the sign (zero 

for positive number and one for negative one). These 

two formats (binary offset and sign and magnitude) are 

difficult to implement in operational unit. Moreover in 

sign and amplitude format there are two representations 

of decimal zero. 

The most popular is format two’s complement that is 

easy to implement in the computer arithmetic unit. In 

this format the positive numbers are represented 

similarly to the unsigned integer format and the sign 

and magnitude format. Also, similarly as in the sign 

and magnitude format, the first bit is reserved for sign. 

For negative numbers the following algorithm is used: 

the decimal number is taken as the absolute value  

next this number is convert to binary format  all bits 

are complemented: ones become zero, zero becomes 

one  a 1 is added to this number. For example -5 is 

converted in following way: -5  0101  1010  

1011. The most important advantage of the format 

two’s complement is that the arithmetic unit in the 

same way adds positive and negative numbers (by 

subtracting it automatically counts in two’s 

complement). 

Many limitations of the fixed point numbers 

(especially in the case of large numbers) can be 

avoided in floating point format. Floating point format 

is similar to the scientific notation of numbers: 

mantissa M is multiplied by 2
E
, where E is exponent. 

Additionally whole number is multiplied by (-1)
S
 where 

S is the sign bit 
 

  ES
Mx 21                      (4.13) 

 

The most popular is the ANSI/IEEE 754-1985 

standard where in a 32-bit representation of the number 

the first bit is a sign bit, next 8 bits are assigned to the 

exponent and last 23 bits are assigned to the mantissa 

according to the formula 
 

  Mx ES
 12721                  (4.14) 

 

The mantissa is represented by the following notation 
 

2322
1

2
21

1
22 22...221   ommmmM  

 

For example the number: 1 00000101 

01110000000000000000000 corresponds to: 
 

(-1)1.43752
-122 

= -2.7036310
-37

. 
 

The floating point format enables representation of 

the numbers with better dynamics but with worse 

resolution. 

It is possible in every moment to convert the binary 

numbers into decimal, hexadecimal or other format. 

But if the signal is being further processed digitally the 

binary format is the most convenient to use.  

Although modern AD converters are very fast they 

need certain time to perform sampling and quantization 

process. Therefore, the AD converters are usually 

preceded by a special circuit holding the processed 

signal for the time necessary for the conversion. These 

circuits are called SH – sample-and-hold circuits. 

An example of the SH circuit is presented in Figure 

5.16. After closing of the switch the capacitor C is 

charged to the voltage value equal to the input voltage. 

After disconnection of the switch the capacitor C stores 

(holds) the voltage. In the holding time the conversion 

(processing) of the signal is performed. The working 

cycle of the SH circuit consists of three parts: sampling 

time, short transient time when the holding value is 

fixed and holding time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.16 

The simple sample-hold circuit and its time characteristic. 

 

The sampling time can be as short as possible, only 

to equalize the input voltage and the capacitor voltage. 

This time can be extended and the changes of the 

voltage on the capacitor can follow-up the input 

voltage. Such circuits are called track-and-hold 

circuits. 

The simple circuit presented in Figure 4.16 is often 

substituted by slightly more complex circuits with 

feedback. The example of the circuit with feedback is 

presented in Figure 4.17. The SH circuits with 
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feedback operate slower than the simple circuits, but 

the accuracy of signal processing is better.  
 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.17 

The sample-hold circuit with feedback. 
 

The sample-and-hold circuits are indispensable parts 

of many digital processors, among them AD and DA 

converters. In the latter case they help in smoothing of 

the signal and elimination of the pulse interferences. 

On the market, there are also available amplifiers with 

SH circuit – SHA – sample-and-hold amplifiers. 

Important parameter of SH circuit is the aperture time. 

Aperture time is the time between hold command and 

disconnection of the signal from the hold capacitor 

(Figure 4.16). The typical times of sampling are of 

about 1 s and the aperture time is not larger than 

several ps. There are also very fast sample-and-hold 

circuits with sampling time of about 10 ns and aperture 

time less than 1 ps. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.18 

The chain of digital signal processing DSP elements. 
 

The main purpose of analog to digital conversion is 

the next digital signal processing DSP. The digital 

signal processing offers many unique possibilities not 

available in the analogue signal processing (Antoniou 

2005, Deziel 2000, Lai 2004, Lyons 2004, Madisetti 

and Williams 1998, Mitra 2002, Smith 2003, Stranneby 

2001). The most popular application of digital signal 

processing techniques is Fast Fourier Transform FFT 

and Digital Filtering. A large area of digital signal 

processing application is image processing and 

multimedia applications (Bovik 200, Jähne 2004, 

Vaseghi 2007, McClellan et al 1998). 

Often DSP is finished with sending the processed 

data. But sometimes is necessary to come back to the 

original analogue form after digital signal is processed 

it. As example can be considered an audio application 

where the last step is an analog loudspeaker. Therefore 

often the signal is converted into digital one; next it is 

processed and then again is converted into analogue 

signal as presented in Figure 4.18.  

At the input of digital to analog conversion usually is 

inserted a register circuit (latch circuit), which is 

required to save the signal for the time necessary for 

conversion of the last digit (the settling time). The input 

register plays the same role as in the case of analog to 

digital conversion the sample-and-hold circuit. An 

analogue signal is generated as the sum of the 

component signals corresponding to appropriate levels 

of quantization. At the output the filter circuit and 

eventually the amplifier are inserted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.19 

The conversion of the digital code to the analog value. 
 

The digital to analogue converters DAC are used for 

the recovery of original analogue signals from the 

digital code. Hence, this process is sometimes called 

the reconstruction of the analogue signal. Each digital 

value of the code is related to the defined value of the 

analogue signal resulting from the partition of the full 

range to the number of quantity – as it is illustrated in 

Figure 4.19.  

Beside presented above de-quantization also the de-

sampling process is necessary to reconstruction of the 

signal. As result of AD conversion we obtain a series of 

pulses with the amplitudes proportional do the digital 

values of the signal in the moments of sampling (Figure 

5.20a). In the simplest case we can complete the lack of 

the signal between the pulses by the holding the 
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magnitude of the pulse until the delivery of the next 

pulse. This process is called ZOH – zero order hold – 

or staircase reconstruction (Figure 4.20b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.20 

The reconstruction of the analog signal. 

 

For the reconstruction of the signal the best would be 

to apply the ideal low-pass filter. If we use the zero 

order hold we realize following relationship 
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The function (5.15) in the frequency domain is 

described as 
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FIGURE 4.21 

Amplitude response of the ideal and real ZOH filter. 

 

 The function (4.16) is presented in Figure 4.21. The 

magnitude of the signal decreases with the frequency 

(as compared to the flat horizontal characteristic of the 

ideal low-pass filter). For that reason, at the output of 

the DA converter a correcting filter of the characteristic 

x/sinx is sometimes inserted. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.22 

The reconstruction of the analogue signal from the series of pulses. 

 

As result of the presence of side leafs of the sinx/x 

characteristics at the output can appear false residual 

images near the fs, 2fs, 3fs frequencies (Maloberti 2007). 

Thus the lowpass smoothing filter at the output of D/A 

converter should remove these signals – similarly as it 

is in the case of anti-aliasing filter at the input of D/A 

converter. 
 

4.2 Analog to digital converters 

Many years various AD converters have been 

designed and developed (Candy 1991, Goeshele 1994, 

Jespers 2001, Norsworthy 1996, van de Plasche 2003, 

Schreier 2004). However, currently on the market there 

are only a few main types of them: successive 

approximations register SAR, pipeline, delta-sigma, 

flash and dual slope (integrating) converters.  

Figure 4.23 and Table 4.4 present the comparison of 

two important parameters of the AD converters: the 

sampling frequency (speed) and number of bits 

(resolution). We can see that there is no one universal 

AD converter – the converters of high speed are of the 

poor resolution and vice versa – accurate (large number 

of bits) converters are rather slow.  

Various converters serve other part of the market. 

The SAR converters are very accurate, operate with 

relatively high accuracy (16-bit) and wide range of 

speed – up to 10 MSPS
7
. Therefore these converters are 

usually applied to data acquisition boards. 

For much higher frequencies (up to several GHz) the 

flash converters are used. As SAR converter needs for 

conversion 3 – 30 s, the flash converters need only 10 

ns. Flash converters seldom are with higher that 8 bits 

                                                
7
 MSPS – mega samples per second. 
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resolution. They are mainly used for oscilloscope and 

telecommunication applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.21 

The comparison of the performances of the main AD converters. 

 
TABLE 4.4 

The best performances of the market available AD converters. 

resolution 

bits 

speed 

sps 

type model 

 

approx. 

price 

31 4k 4th ADS1282 34 

24 16k 2nd ADS1211 13 

24 2.5M  AD7760 25 

24 4M  ADS1675 18 

18 100s integr MAX132 10 
18 2M SAR AD7641 29 

16 10M  ADS1610 21 

16 10M SAR AD7620 35 
16 1M SAR ADS8329 7 

16 250M pipeline AD9467 100 

14 10M pipeline ADS850 17 
14 250 pipeline ADS4129 72 

12 1G pipeline ADS5400 775 

12 500M pipeline AD9434 85 
8 2.2G flash MAX109 20 

8 40M half-flash TCL5540 2.5 

6 800M flash MAX105 36 

 

The pipeline converters can exhibit both - high 

resolution and high speed. But they are rather complex 

and expensive and therefore used for special purposes.  

The integrating – dual slope converters enable to 

obtain very high resolution and accuracy. But because 

their conversion time is relatively long 10 – 150 ms 

they are mainly used for conversion of DC signals. Due 

to high accuracy these converters are usually used in 

digital measuring instruments.  

The best resolution and dynamics exhibit delta-sigma 

converter. Recently these converters are in significant 

progress and gradually substitute the dual-slope 

converters in many applications. Also in measuring 

converters, including data acquisition boards theses 

converters are often used. The main area of application 

of delta-sigma converters are the multimedia, due to 

their high dynamics and low noise level. 
 

Successive Approximation Register –SAR converters 

Figure 4.22 presents the principle of operation of the 

SAR converter. The SAR (Successive Approximation 

Register) is one of the most commonly used AD 

converters in scientific instrumentation. It is because 

their performances (resolution 16- or 18-bit, speed up 

to 10 MSPS, time of conversion 1 s for 16-bit are 

acceptable for the most of applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.22 

The principle of operation of SAR converter. 
 

The principle of operation of the SAR device 

resembles the weighting on the scale. Successively the 

standard voltages in sequence: U/2, U/4, U/8...U/2
N
 are 

connected to the comparator. These voltages are 

compared with converted Uin voltage. If the connected 

standard voltage is smaller than the converted voltage 

in the register this increment is accepted and the 

register sends to the output signal “1”. If the connected 

standard voltage exceeds the converted voltage the 

increment is not accepted and register sends to the 

output signal “0”.  

Figures 4.23 and 4.24 present the example of the 

SAR converter – model AD7667 of Analog Devices. 

The standard voltages are obtained using the array of 

16 binary weighted capacitors. During the acquisition 

phase all switches are connected to analog input Uin and 

the capacitors are charged. In the conversion phase the 

capacitors are disconnected from the Uin and connected 

to the reference ground. This way the captured voltage 

is applied to the comparator input. Next, the switches 

connect successively the capacitor array to the standard 

voltage Uref (thus we realized digital to analog 

conversion DAC of input voltage). This difference is 

connected to the comparator input. The control logic 

unit toggles switches as the comparator is balanced. As 
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this process is completed the control logic sends the 

code to the digital output. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.23 

The principle of operation of the PulSAR converter of the Analog 

Devices (model AD7667). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.24 

Functional block diagram of the AD7667 PulSAR converter of 

Analog Devices. 

 

The main advantages of the presented converter are 

its high accuracy and low consumption of power – only 

one comparator is used for the conversion. Figure 4.24 

presents the functional diagram of this converter. The 

16-bit device enables conversion of the 0 – 2.5 V 

voltage to the digital output (serial or parallel) with 

uncertainty 0.004%FS, dynamics 88 dB and sampling 

rate 800 kSPS (conversion time 1.25 s). The power 

consumption is only 80 mW  (130 W for fs = 1 kSPS). 

 

Flash converters 

In the flash converters instead of successively 

connecting weighted binary voltages to one comparator 

(as in SAR devices) there are connected at the same 

time binary weighted voltages to 2
N
 comparators (each 

possible states). The example of flash converter is 

presented in Figure 4.25. 

In the case of the 8-bit converter it is necessary to 

connect 255 resistors to the 255 comparators (in the 

case of 16-bit converters it would be 65 535 

comparators!). No wonder that the flash converters are 

designed as at most 8-bit converters. The main 

advantage of the flash converters is that the conversion 

is performed in one step. Therefore the time of 

conversion is very small (less than 1ns) and the 

sampling rate above 1 GSPS is possible. The main 

drawback of the flash converter is its poor resolution 

(number of bits) and large power dissipation (due to 

great number of comparators).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.25 

Functional block diagram of the AD7667 PulSAR converter of 

Analog Devices. 

 

As an example of flash converter we can consider the 

MAX109 model of Maxim. It is an 8-bit converter 

(effective number of bits ENOB = 6.9 for 1.6 G GSPS) 

with a sampling rate up to 2.2 GSPS and conversion 

time 0.5 ns. The uncertainty of this converter is 0.25 

LSB and the power consumption is 6.8 W. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.26 

An example of the half-flash type AD converter. 

 

It is possible to decrease the number of converters in 

the half-flash type converter – presented in Figure 4.26. 

In such converter the sampling is performed in two 

sub-ranges. The first 4-bit flash converter processes 

roughly the first four bites. The converted voltage is 

subtracted from the input voltage (from the track-and-
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hold circuit) and this voltage difference is converted by 

the second fine 4-bit flash converter. Due to this 

solution the number of converters in 8-bit device is 

diminished to 30 (from the original 255). 

As an example of the half-flash converter we can 

consider TCL5540 converter of Texas Instruments. 

This converter enables 8-bit conversion with the 

sampling rate 40 MSPS and conversion time 9 ns. The 

uncertainty of this converter is 1 LSB. 
 

Pipeline converters 

Pipeline converters extends the idea of the half-flash 

converter to many subranges (these converters are 

sometimes also called as “subranging”). The main 

differences between half-flash and pipeline converters 

are as follows: in a half-flash converter there are two 

stages while in pipeline converters there can be several 

stages; after each stage there are inserted amplifiers for 

improving the resolution of the next stage; between the 

stages there are inserted track-and-hold circuits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.27 

The example of 12-bit pipeline converter. 
 

An example of two-stage pipeline converter is 

presented in Figure 4.27. The input signal after SH 

circuit is converted to digital signal by ADC1 converter 

– 6 most significant bits. The remaining signal is again 

converted to a digital one by DAC1 circuit and it is 

subtracted from the input signal. This residual analogue 

signal is amplified to obtain better resolution in the 

next stage. The signal is converted again to a digital 

signal by ADC2 converter – 7 least significant bits. The 

important is the error correction logic circuit. In a 12-

bit converter both converting stages, 6 bits and 7 bits, 

have common 1 bit. This overlapped additional bit is 

used for the eventual error correction. As the signal is 

going sequentially stage by stage the converter can 

exhibits latency time depending on the number of 

stages. This latency can be a problem in some 

applications, for example including feedback. If the 

sampling rate is too slow the hold time of track and 

hold parts can be disturbed causing conversion error. 

Therefore pipeline converters has also limited 

minimum sampling rate.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.28 

The functional block diagram of AD6645 pipeline converter of 

Analog Devices. 

 

The multistage operation enables to perform the 

conversion with relatively high resolution 14 – 18 bits 

and sampling rate up to 100 MSPS. In comparison with 

flash converters a much smaller number of comparators 

is required – for example four-stage 16-bit converter 

requires only 60 comparators. Figure 4.28 presents the 

three-stage pipeline converter of Analog Devices 

(model AD6645). It enables the conversion with 14-bit 

resolution and sample rate 105 MSPS (minimum 

sampling rate 30 MSPS). The time of conversion is 10 

ns, power consumption 1.5 W and uncertainty 1.5 LSB. 
 

The dual slope converters 

The integrating converters are often realized as the 

dual slope converters. The principle of operation of 

dual slope converter is presented in Figure 4.29. The 

integrating circuit is connected to the comparator that 

detects the zero-level of the integrator signal. This 

comparator controls the logic gate connecting the clock 

generator to the counter. 

The dual slope converter operates in two half-cycles. 

In the first one to the integrating circuit the measaured 

voltage is connected for the fixed time T1. At the same 

time the clock oscillator of frequency fcl is connected to 

the counter. The first half-cycle is finished when the 

counter indicates assumed value, for example N1 = 

1000. The voltage at the output of the integrating 

circuit increases with a fixed slope to the value 
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FIGURE 4.29 

The principle of operation of the dual slope integration ADC. 

 

In the second half-cycle the reference voltage of the 

reverse polarization is connected to the integrating 

circuit and the counter starts counting the clock 

oscillator pulses. The voltage at the integrator output is 

decreased to the moment when the comparator detects 

zero. The zero state is when the following condition is 

fulfilled 
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cl cl

UU 1 1
N N

RC f RC f
                (4.18) 

 

and the number of counted pulses is 
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N
N U

U
                           (4.19) 

 

Thus the final state of the counter depends on the N1 

value (this we is fixed very precisely), on the reference 

voltage value Uref and of course on the converted 

voltage value Ux. The value indicated by the counter 

does not depend on the RC value and the frequency of 

clock oscillator. 

The important feature of the integrating converters is 

the rejection of AC noises. Consider the case that the 

measured DC voltage Ux is accompanied by the 

interference AC voltage Uint= Umsin(t + ). After 

integration we obtain 
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Thus if the integration period T is fixed in such a way 

that T = 2 / then the second term (AC interference) 

is equal to zero. The noise rejection ratio RSNR is (Tran 

Tien Lang 1987) 
 

  



coscos
log20




T

T

error

noise
RSNR   (4.21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.30 

The noise rejection ratio in the integrating AD converter. 

 
 

Figure 4.30 presents the dependence of the RSNR 

factor on the frequency. The integration converter 

behaves like a selective filter rejecting not only the 

component of the frequency f = 1/T but also the 

harmonics of this signal. Usually, the value of T is 

fixed to be equal to 20 ms, which enables rejection of 

the 50 Hz signal and its harmonics. In practical circuits 

the T period is sometimes synchronized with the 

frequency of the supply AC voltage. 

The relatively long time of integration is a drawback 

of the dual slope converter. This problem can be 

overcome by applying the multislope converter (Figure 

4.31). 

There are three-fold-slope and quad-slope devices. In 

the three-fold-slope device the second cycle (of dual 

slope device) is divided to the two steps. In the second 

step the reference voltage is connected to the integrator 

with smaller R resistance (for example 100 times 

smaller). This way the time necessary to decrease the 

output voltage of the integrator is 100 times shorter. 

After the integrator output voltage reaches a defined 
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threshold voltage it is again connected the R resistor for 

precise detection of the zero state. Thus after these 

three phases the following relationship is realized  
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FIGURE 4.31 

Principle of operation of a three-fold-slope converter. 

 

The multi-slope integrating technique offers 

improvement of the conversion speed (or resolution in 

the same time) at the expense of more complexity and 

the need to apply two precise resistors. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.32 

The integrating converter with the auto-zero correction (Tran Tien 

Lang 1987). 

 

Another problem appearing in the integrating 

converters is a zero drift. The minimization of this 

effect is possible in quad-slope converters, where an 

additional cycle is performed for the short-circuited 

input, which enables us to introduce the required 

correction. Another method is the application of the 

auto-zero function. An example of such a converter is 

presented in Figure 4.32. The conversion time is 

divided into four cycles – in the first one for the short-

circuited input and connected resistor, instead of the 

capacitor (switch K4), the capacitor Co (connected by 

the switch K5) is charged to the offset voltage. In the 

two next cycles (typical dual slope operation) this 

voltage across the capacitor Co is subtracted 

automatically, introducing the zero correction. In an 

additional fourth cycle the capacitor is short-circuited 

in order to remove the charged voltage. 

The integrating converters are typically used as the 

end part of DC digital voltmeters. Therefore they are 

usually equipped with a digital display. Currently, the 

the integrating converters are often substituted by 

cheaper delta-sigma converters. The important 

drawback of the integrating converter (apart from the 

long time of conversion) is the necessity of use of the 

expensive, high quality capacitors. Although there is no 

capacity C in the equation 4.19, the accuracy of the 

converter depends on the quality of this capacitor (the 

effect of memorizing the residual voltage).  

Typical integrating converters operate as 12-bit or 

15-bit (3 ½ or 4 ½ digit displays). The 18-bit 

integrating converter of Maxim (model MAX132) 

exhibits an uncertainty of 0.006%. 
 

Delta-Sigma converters 

The delta-sigma  converters called also 1-bit 

converters or bitstream converters
8
 utilize the 

oversampling technique. Due to many advantages 

(most of all the best resolution – even up to 31-bit) 

these converters are currently very intensively 

developed (Candy 1991, Norsworthy 1996, Schreier 

2005). The typical architecture of delta-sigma converter 

is presented in Figure 4.33 and the principle of 

operation of such converters is illustrated in Figure 

4.34. 

In delta-sigma conversion is used the delta 

modulation (hence the name of this device). In delta 

modulation the width of the impulse is proportional to 

the value of converted signal. As the 1-bit ADC 

quantizer operates the comparator and latch switched 

with the frequency Kfs forced by the clock (K is the 

oversampling factor). The output voltage is converted 

again to analogue form by 1-bit DAC. The adder in the 

input compares the input value and the output signal.  

The simplified picture of signals in delta-sigma 

converter is presented in Figure 4.34. The operation is 

controlled by clock oscillator (point E). If the input 
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signal is equal to 0.5 Uref  (point A) the output of 1 bit 

DAC generates pulses of the same width 

(corresponding of the signal of a clock generator). This 

signal is subtracted from the input signal (sigma 

operation) and difference is connected to the input of 

integrator (point B). Note that due to the feedback 

mean value of 1-bit DAC is always equal to the input 

signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.33 

The architecture of typical delta-sigma modulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.34 

The signals in selected point of delta-sigma converter presented in 

Figure 4.33. 

 

At the output of integrator is triangular signal that is 

next converted to rectangular one by the comparator. 

Output signal is additionally formed by the latch flip-

flop converter (in the output is signal “1” if both clock 

and input signals are “1”).  

When the input signal is equal to Uref we again obtain 

triangular signal after integrator but the comparator 

does not change the output state because the integrator 

signal is always larger than zero. Similarly is when the 

input signal is equal to zero – the integrator signal is 

always smaller than zero (compare both cases in point 

D. For Uin = 0.2 Uref we obtain at the output pulses of 

smaller width.  

There are various solutions of delta-sigma converter 

(1 bit DAC can switch between Uref and zero as well 

between -Uref and +Uref) but always the mean value of 

output bitstream corresponds with input signal value as 

it is presented in Figure 4.35.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.35 

The 1-bit converter signals of increased linearly input voltage and 
sinusoidal input voltage. 

 

The important advantage of the delta-sigma 

converter is the noise suppression. In the previous 

chapter it was shown that the increase of the output 

signal of 1 bit results in increase of dynamics of 6 dB. 

This conclusion can be inverted – an increase of the 

dynamics (SNR – signal to noise ratio) of 6 dB would 

give the possibility of increasing the resolution by one 

bit. Thus the SNR of about 140 dB enables us to obtain 

a 24-bit converter. 

Figure 4.36 presents the equivalent circuit of the 

delta-sigma converter with the source of noises. The 

output signal value is  
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FIGURE 4.36 

The equivalent circuit of the delta-sigma converter. 
 

For N(s) = 0 we can describe the transmittance of the 

converter as: 
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The relationship (4.25) is the transmittance of the 

low-pass filter. If the X(s) = 0 we obtain: 
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and transmittance for the noise source is 
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FIGURE 4.37 

The noise in delta-sigma converter: suppression due to oversampling 

(b) and noise shaping (c). 

The circuit operates for the noises as a high-pass 

filter and reduces the noises for low frequency (Figure 

4.37c). This feature is called noise shaping. Thus the 

delta-sigma converter suppresses the noises in two 

ways. Due to oversampling the noises are decreased, 

because the noises energy is distributed in the larger 

bandwidth (Figure 4.37b). And additionally the noises 

are attenuated, because the signal is filtered as low-pass 

while the noises are filtered as high-pass (Figure 

4.37c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.38 

The dependence of SNR on the order of delta-sigma modulator and 

the oversampling factor 
 

To obtain a noise suppression of about 40 dB it is 

necessary to apply a oversampling factor equal to 64 

(Figure 4.38). Further noise suppression is possible by 

increasing the order of the modulator. From the graph 

presented in Figure 4.38 we can see that to obtain a 24-

bit converter (140 dB dynamics) it should be to apply a 

third order modulator. Figure 4.39 presents the circuit 

of the second order delta-sigma converter. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.38 

The second order delta-sigma converter 

 

It is also possible to obtain improvement of dynamics 

and SNR by cascade connecting several converters of 

first order. In such circuit it is necessary to apply the 

differentiating circuits in order to add the output signals 

of the subsequent steps. The technique of multistage 

converting is called MASH (Multistage Noise Shaping) 

and these converters are used in high quality audio 

devices to obtain excellent dynamics. Figure 4.39 

presents the circuit of the MASH type converter. 
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FIGURE 4.39 

The MASH type multistage delta-sigma converter. 
 

Recently on the market is available huge choice of 

delta-sigma converters of excellent performances: high 

resolution up to 30 bits, high dynamics to 130 dB, high 

accuracy and even large frequency bandwidth of 

several MBPS (see Table 4.4). No wonder that delta-

sigma converters practically excluded integration 

converters and also are competitive to SAR devices. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.40 

The architecture of high resolution delta sigma converter – model 
ADS1282 of Texas Instruments. 

 

As an example we can consider high resolution delta-

sigma converter ADS1282 of Texas Instruments with 

resolution 130 dB – 31 bits, nonlinearity INL 0.5 ppm 

and sampling frequency 4 kSPS. It consists of fourth 

order delta sigma converter – two second order stages 

in pipeline structure (Figure 4.40).  

Many one-bit converters are equipped with 

decimation filters enabling to change of the sampling 

rate – for example from 64fs/1 bit to fs/16 bits. The 

decimation process is realized by using the low-pass 

digital filter (removing of high frequency quantization 

noses) and by removing of excess samples.  

As the decimation filter commonly are used sinc 

filters (sinx/x filters) with the transfer function: 
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where N is the decimation ratio and fmod is the sampling 

frequency of delta-sigma modulator.  

Figure 4.41 presents the transfer characteristic of 

typical decimation filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.41 

An example of the frequency response of sinc decimation filter. 
 

Similarly as in the case of analogue signal processing 

the digital signal processing can be influenced by the 

zero drift of the amplifier (especially the temperature 

zero drift) and the gain error. Therefore some 

converters are equipped with calibration tools, as it is 

presented in Figure 4.40. 

Figure 4.42 illustrates the main errors of linearity. 

The integral nonlinearity INL is the deviation of the 

values of the actual transfer function from a straight 

line. The differential nonlinearity DNL is the incorrect 

quantization resulting in not equal quanta. If the 

elementary quant is LSB the DNL is deviation from the 

ideal 1 LSB code. The special case of the large 

differential nonlinearity is the missing code error. This 

error occurs when the quantization step is larger than 2 
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LSB. For example due to large DNL the number 100 

(in Figure 4.42) is not indicated during the conversion. 

Because this error is dangerous for accuracy of 

conversion many of manufactured converters are 

described as “no missing code”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.42 

The transfer characteristic of the 3-bit converter with the integral 

nonlinearity error INL and the differential nonlinearity error DNL 

 

The performances of the analog-to-digital converters 

are described by many parameters presented in data 

sheets. Below are presented main of these parameters. 

SNR is the described earlier signal to noise ratio 

(usually it is the ratio of amplitude of the signal to the 

amplitude of the noises but also the ratio of rms values 

is used).  

SINAD (signal to noise and distortion ratio) is 

defined as the ratio of rms value of the sine wave to the 

rms value of noises plus all harmonics of the signal. 

THD (total harmonic distortion) is the ratio of rms 

sum of the harmonics to the fundamental component. 

IMD (intermodulation distortion) appears when the 

input signal contains two signals of similar magnitude 

and frequencies f1 and f2. After the sampling process 

there can be generated components of the frequencies f1 

- f2, f1 + f2, 2 f1 - f2 etc. IMD is defined as the ratio of the 

rms of intermodulation components to the signal 

without distortion. 

SFDR (spurious free dynamic range) is defined as 

the ratio of rms value of fundamental signal component 

to the rms value of the largest spurious component 

(mainly spurious pulses).  

Transient response is the response of the converter 

after the step unit change of the input signal. 

FPBW (full power bandwidth) is defined as the point 

of the frequency characteristic where the amplitude of 

the digitized conversion result is decreased by 3 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.43 

The dependence of the ENOB factor on the parameters of delta-sigma 

converter (ADC model MSC1210 of Texas Instruments) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.44 

The dependence of the ENOB factor on the input frequency (ADC 

model AdC08D1020 of Texas Instruments) 
 

Special importance is related to the ENOB (effective 

number of bits) factor. In an ideal analogue-to-digital 
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000

001

010

011

100

101

110

111

UinFS

N

INL

111

UinFS

N

LSB

DNL

missing code

000

001

010

011

100

101

110

 

20

10

10 100 1000

data rate [SPS]

E
N

O
B

20

10
500 1000 1500

decimation

E
N

O
B

15

fmod = 203 kHz

fmod = 15.6 kHz

gain 1

gain 128

 

0.5 1.0 f [GHz]

8.0

7.0

6.0

50

40

30

E
N

O
B

S
N

R
 [

d
B

]SNR

ENOB

 



Handbook of Electrical Measurements                                                                                                     123 

real converters with the increased frequency additional 

noises and distortion can be quite significant. 

In delta-sigma converters the customer has usually 

possibility to select parameters, as frequency of 

modulation, gain, decimation factor etc.  Thus it should 

feel the consequences of the choice of parameters as it 

is presented in Figure 4.43. 

The ENOB factor is closely related to the dynamic of 

the converter measured by SINAD factor: 
 

02.6

76.1


SINAD
ENOB                                 (4.30) 

 

Especially noise influences the dynamics in the very 

high speed flash converters. As it is presented in Figure 

4.44 the effective number of bits declared as 8-bit 

converter decreased to almost six for 2 GHz signals. 

 

4.3 Digital to analog converters 

In digital to analog conversion it is necessary to 

perform de-sampling operation and de-quantization 

also. The de-sampling operation consisting of zero-

order hold and filtering was described earlier (see 

Figure 4.22). The de-quantization operation can be 

realized by the circuit with the summation of the 

voltages corresponding to binary code saved in register, 

as it is presented in Figure 4.45.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.45 

The digital to analogue converter with weighted resistors 

 

The converter presented in Figure 4.45 is rather 

difficult to manufacture because it requires precise 

resistors with a very wide range of values. 

Technologically simpler is to use the same value of 

resistors, although it means that the number of these 

resistors can be huge.  

The converter built from single-valued resistors 

requires 256 resistors for 8-bit conversion and as much 

as 65 536 of them for 16-bit conversion. In practical 

circuits the voltage divider can be composed of two 

dividers – one for coarse conversion (the first 8 bits) 

and the second for fine conversion (last 8-bits). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.46 

The functional block diagram of the string digital-to-analog converter 

AD569 of Analog Devices  

 

In such design in order to achieve 16-bit conversion 

only (!) 512 resistors are required. Although such a 

number of resistors seems to be great these converters 

(called segmented converters or string converters) are 

available on the market – as an example we can 

consider the DA converter model AD569 developed by 

Analog Devices (Figure 4.46). The main advantage of 

the string converter is relatively large speed and very 

good linearity of conversion. The AD569 converter 

enables 16-bit conversion with nonlinearity less than 

0.01% and settling time 3 s. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.47 

The R-2R digital to analogue converter with ladder network 

 

Further simplification of the converter circuit is 

possible in the R-2R converter presented in Figure 

4.47. In this case also the resistors of the same value R 

are used (2R can be composed from two resistors). At 

each node the current splits into halves. The resulting 

output voltage is proportional to the total current 

0

0

1

1

Uref

R

2R

4R

8R

-

+

 

M
S

B
 s

eg
m

en
t 

se
le

ct
io

n

L
S

B
 t

a
p

 s
el

ec
ti

o
n

R
1

R
2

5
6

+

-

+

-

R
2

5
7

R
5

1
2

+

-

16-bit latch

8-bit latch 8-bit latch

OUT

+Uref

-Uref

AD569

 

0 01 1

an a1
MSB LSB

2R 2R 2R 2R 2R

R R RI I/2

I/2

I/

4

I/4 I/8

-

+

 



124                                                                                               Digital Signal Processing in Measurements 

summed at the inverting input of the amplifier. It is 

advantageous that the whole network is consuming the 

same current from the supply source independently of 

the positions of the switches.  

In the R-2R converter it is not required to have 

precise value of the resistors – it is only necessary to 

have the resistors with precisely the same value of each 

resistance. Recently are available converters based on 

R-2R principle with 20 bit resolution and settling time 

equal to 1 s – as for example AD5791 converter of 

Analog Devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.48 

Digital-to-analog converter with weighted currents 

 

Instead of applying of the current divider we can 

simply switch the current sources as it is presented in 

Figure 4.48. The advantage of the converter with 

switched currents (called a current steering converter) 

is relatively high speed (up to 500 MSPS). For 

example, the 8-bit converter model DAC08 of Analog 

Devices converts data with an update rate up to 12 

MSPS and settling time 85 ns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.49 

The reconstruction of the analog signal after oversampling and PWM 

modulation 

Advantages of delta-sigma converters with 1-bit 

bitstream as high dynamics, noise shaping and linearity 

are also commonly used in reverse digital0analog 

conversion. If the signal is represented by great number 

of samples per period, it is practically continuous 

(Figure 4.49) because in pulse with modulation the 

average value of digital signal is proportional to 

primary analog signal and can be reconstructed only by 

using the low-pass filter. In practice to obtain pure 

signal (to remove noises and distortion) more complex 

multi bit delta-sigma converters are used but the idea of 

simple analog signal reconstruction by using only low-

pass filter is applied. 

The conventional audio CD technique uses PCM 

(Pulse Code Modulation) technique with 44.1 kHz 

sampling frequency and 16 – 24 bit resolution. 

Therefore using oversampling technique it is necessary 

to use decimation filter to recover such digital signal 

from the 1-bit bitstream (as presented in Figure 4.50).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.50 

Conventional (a) and DSD (b) techniques of audio signal recording 

and reproduction 

 

In the DSD (Direct Stream Digital) technique 

introduced by SONY audio system the 1-bit stream of 

the oversampling frequency 2.82 MHz is directly 

recorded on the DVD type disc profiting high density 

of this disc and enhanced speed of data transmission.  

Signal converted by applying of the oversampling 

technique often needs to be converted again to 

“ordinary” sampling form with sampling frequency 

decreased to fs and the same time the resolution 

increased to multi-bit form (for example 20-bit 

resolution as it is presented in Figure 4.50). To perform 

such operation special filters called decimation filters 

can be used (see Figure 4.41). 

Sometimes to improve the possibility of signal 

reconstruction the increase of the number of samples in 

is recommended. Such an operation can be performed 
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using various kinds of interpolation filters. Figure 4.51 

presents the relatively simple technique of increasing of 

number of samples by inserting additional samples. In 

first step the zero value additional samples are added 

and next after using the low-pass filter we obtain the 

signal with more samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.51 

The increase of number of samples by insertion of additiona zero 

samples 
 

The delta-sigma oversampling DSD converters are 

mainly used in high quality sound processing. As the 

example in the Figure 4.52 is presented audio 24 bit, 

192 kHz multibit delta-sigma converter model AD1852 

of Analog Devices. It exhibits 117 dB dynamic range 

and 102 dB THD+N.  

 

 

 

 

 

 

 

 

 

 
FIGURE 4.52 

Simplified functional block diagram of audio stereo delta sigma DAC 

 

In the data sheets describing the performances of 

digital-to-analog converters similar parameters are used 

as in the case of analog-to-digital converters. Figure 

4.53 describes the integral nonlinearity error INL and 

differential nonlinearity error.  

The integral nonlinearity is the difference between a 

real transfer function and an idealized straight line. The 

differential nonlinearity is the difference between ideal 

step equal to 1 LSB code and the real step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.53 

Integral nonlinearity error INL and differential nonlinearity error DNL 

of DAC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.54 

The error of monotonicity 

 

The error of monotonicity is corresponding to the 

differential nonlinearity error. The DAC is monotonic 

if the analogue output always increases as the input 

code increases. Because this error deteriorates the DAC 

performances the manufacturers often mention 

“guaranteed monotonicity”. An example of the 

monotonicity error is presented in Figure 4.54. 
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FIGURE 4.55 

The glitsch and jitter disturbing the signal 

 

As the converter performs the switching operations 

in the transition state can appear short spikes called 

glitches. These pulses are dangerous because they are 

not observable on the standard (poor quality) 

oscilloscopes, although they can disturb the signal 

processing. Therefore at the output of converter often is 

inserted a special filter called a deglitcher. One of the 

techniques to eliminate glitches is to use sample-and-

hold circuits holding the signal during the switch 

process. Another error related to the switch process is a 

jitter (Figure 4.55). The jitter error means the 

unrepeatability of the pulse slope, pulse duration or 

pulse phase.  

 

4.4 Tools of digital signal processing 

The digital signal processing DSP requires the 

knowledge of several new specific mathematical 

methods although most of the methods used in 

analogue signal analysis have equivalents in digital 

signal analysis. For example the Fourier Transform in 

the analog technique is equivalent to the Discrete 

Fourier Transform DFT, analog convolution is 

equivalent to the digital one, Laplace s-operators are 

sometimes supplemented by the z-transform. In this 

chapter the main term of DSP technique are collected 

or reminded. 

One bit can be represented by one impulse. If this 

impulse exhibits a short duration time it can be 

represented by the Dirac delta function denoted by (t). 

The delta function is a normalized impulse with a value 

of one 
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This impulse can be shifted (Figure 4.56) and this 

operation is denoted as  (n-k)  
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Thus the impulse of the discrete function of the value 

x(k) can be described as 

 

     knnxkx                      (4.33) 

 

where fist part x(n)  represents value of the impulse and 

the second one (n-k) informs about position or shift of 

the impulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.56 

The discrete function (a), shifted unit impulse (b) and the selected 

impulse x(k) (c) 

 

 The discrete signal is composed of the series of 

impulses with the magnitude proportional to the 

sampled signal f(t) and with the period Ts  
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or generally 
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We can perform the mathematical operations on the 

discrete signals. We can add discrete signals y(n) = 

x1(n) + x2(n) as well we can multiply such signals y(n) 

= x1(n)x2(n). We can also shift the signal by no thus 

y(n) = x(n-no). We can describe relation between output 

and input of digital system as differential equation: 
 

   
N M

k m

k 0 k 0

a y n k b x n k
 

                 (4.36) 

 

or more generally 
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These operations are possible if the system is linear 

time invariant LTI. The system is linear if the additive 

relation called as the superposition principle is valid. 

The superposition principle is described as 
 

     1 2 1 2f x f x f x x            (4.38) 

 

 Thus if y1(n) is the system response to the input 

signal x1(n) and y2(n) is the system response to the 

input signal x2(n) and 
 

     nxanxanx 2211            (4.39) 

 

the output of a linear system is 
 

     nyanyany 2211               (4.40) 

 

The superposition is very important in DSP. Let us 

assume that the input signal x(n) can be decomposed, 

which means that it can be converted into two or more 

additive components x1(n), x2(n)..... We can determine 

the output signal component of each input signal y1(n), 

y2(n)... Next the output signal can be synthesized as the 

sum of each component. The synthesized output signal 

is identical as calculated directly y(n)=f(x(n)). Thus if 

the system is complex we can analyze it as 

superposition of simpler components. 

The system is time invariant (stationary) if the delay 

(shift in the time domain) of the input signal causes 

appropriate delay of the output signal. Thus if 

x(n)=x1(n-no) the response is y(n)=y1(n-no). 

For the analysis of the discrete signal it is required if 

the system is casual. In the casual system the output 

signal depends only on the previous or present values 

of the input signals. Thus if input samples are x(n) for n 

< no the output signal does not depend on the samples n 

> no. 

 

The LTI circuit is completely characterized by the 

answer to the delta impulse input known as impulse 

response h(n) – Figure 4.57. The number of output 

impulses (corresponding with one input impulse) 

depends on the order of the digital circuit. 

 

 

 

 

 

 

 

 
FIGURE 4.57 

The impulse response of the 5
th

 order digital system 
 

The discrete signal can be also represented in 

frequency domain. If this signal is periodical we can 

perform the conversion from the time domain to 

frequency domain by using Discrete Time Fourier 

Transform DTFT
9
: 

 

     j jn

n

X X e x n e 






            (4.41) 

 

or for limited number of samples N Discrete Fourier 

Transform DFT: 
 

   
N 1

j2 nk / N

n 0

X k x n e 






             (4.42) 

 

as polar function or as trigonometric function
10

 
 

       
N 1

n 0

X k x n cos k 2 nk / N j sin 2 nk / N 




   

(4.43) 

For signals sampled with frequency fs (thus x(nTs)) 

the relationship (4.42) can be rewritten as 
 

      s

N 1
jn / N

s

n 0

X k X x n e







      (4.44) 

or 

    s

N 1
jns

n 0

X k X x n e
N

 




 
  

 
     (4.45) 

 

The frequency representation of discrete signal is a 

complex number consisting of real cosines part and 

imaginary sinus part (or modulus and phase 

                                                
9
 The signals in time domain we describe usually by using small 

letters e.g. x(n) while in frequency domain by using large letters e.g. 

X(m). 
10

 According to Euler rule: 
je cos j sin    . 

y(n) =h(n)x(n)

LTI

circuit
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components). Sometimes, for example for spectral 

analysis it is sufficient to present only modulus of the 

result of Fourier transform. Figure 4.58 presents an 

example of signal in the frequency domain – note that 

some samples can be equal to zero.  

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.58 

An example of the signal presentation in the frequency domain. 
 

Of course we can always return from frequency 

domain to the time domain by using the Inverse 

Discrete Fourier Transform IDFT: 
 

    s

N 1
jn

m 0

1
x n X m e

N






                 (4.46) 

 

or more generally 
 

   
N 1

j2 nm/ N

m 1

1
x n X m e

N






            (4.47) 

       
N 1

m 1

1
x n X m cos 2 nm / N j sin 2 nm / N

N
 





   

(4.48) 
 

For describing discrete signals and operations very 

convenient is to use the z-Transform: 
 

      n

n

X z Z x n x n z






             (4.49) 

 

where 
jz re  . By comparing with relationship (4.41) 

describing DFT we see that the z-Transform is the 

same as Fourier Transform for r = 1. 
 

The z
-1

 is equivalent to the delay of the signal by one 

sample 
 

    zXznxZ 11                  (4.50) 

 

while z
-m

 means the delay by m samples 
 

   mZ x n m z X z                     (4.51) 

 

The differential equation (4.37) we can now 

rewritten in simplified form as:  
 

         
M N

k k

k 1 k 0

Y z Y z a k z X z b k z 

 

       (4.52) 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.59 

The relation between input and output signal of linear discrete system. 

 

If we have linear DSP circuit treated as the “black 

box” we are able to determine the output signal if 

earlier the impulse response h(n) was defined. The 

relation between output y(n) and input x(n) signals is 

described by the relationship: 
 

     






k

knhkxny                 (4.53) 

 

|This relation is known as the convolution and denoted 

by the symbol *: 
 

         nhnxknhkxny

k

 




          (4.54) 

or 

         nxnhkhknxny

k

 




       (4.55) 

 

The convolution is the relationship between input 

signal and output signal of LTI systems and enables to 

determine the response signal if the impulse response 

h(n) is known. The reverse operation known as a 

deconvolution enables to determine the input signal if 

the output signal and impulse response are known.  

The z-transform of the impulse response is 
 








0

)(

k

k
k zhzH                      (4.56) 

 

and the relation between input and output is: 
 

y(n) =h(n)*x(n)x(n)

LTI

circuit

h(n)

 

X(m)

m

0 1 2 3 4

fs /N
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)()()( zXzHzY                      (4.57) 

 

Thus in time domain the linear digital circuit is 

completely described by its impulse response h(n) and 

the same in the frequency domain by frequency 

impulse response H(z) (or H()). 

The convolution can be realized in the z-domain as 

simply multiplication. The transfer function H(z) 

explicitly describes the properties of the casual system.  

In general case the transfer function can be described 

by diffwrential equation: 
 

3
3

2
2

1
1

2
3

2
2

1
1

1

...
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or 
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             (4.59) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.60 

The system is stable because poles are inside the unit circle (a) and the 

system in unstable with the poles outside of the circle (b) (0 – 

frequency of oscillations) 
 

It is possible that the denominator can be equal to 

zero what means non-stability of the system. Therefore 

the analysis of the transfer function is important to 

check if digital circuit is stable. We can rewrite the 

relationship (4.59) in a form: 
 

   
   ...

...
)(

321

321

pzpzpz

zzzzzz
zH




            (4.60) 

where z1, z2, z3 values are the zeros (values of the z 

when the numerator is equal to zero) and p1, p2, p3 are 

poles (the values of z when the denominator is equal to 

zero). 

The zeros (z1, z2, z3...) and poles (p1, p2, p3...) are 

complex numbers. If we analyze the position of the 

poles in the z-plane we can test the conditions of 

stability. The casual system is stable if the poles are 

located inside the unit circle z=1 in the z-plane 

(Figure 4.60). 

The convolution is a very important operation in 

digital signal processing – practically all digital filters 

perform this operation. In calculation of the 

convolution we repeat many times elementary 

operation – h(k)x(n-k). Looking at the figure 4.56 it is 

obvious that elementary operation consists of shifting 

our impulse by k and multiply by h(k). Next according 

to the relationship (4.55) it is necessary to add results 

of these elementary operations to obtain output impulse 

y(n).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.61 

The “convolution machine” as a tool for calculation of the convolution 

(after Smith 2003) 
 

The convolution operation as computer algorithm is 

relatively simple. The calculate of the y(n) output 

impulse it is necessary to perform following steps: 

a) reversing left-for-right the signal h(n) 

b) shift this signal by n samples 

Zim

Zre

0

Zim

Zre

0

a)

b)

y(n)

y(n)

n

n
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y(n)

h(n)
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1 0231 023
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c) multiply this signal by corresponding impulses in the 

input signal: h(k)x(n-k) 

d) to add all multiplied results.  

Figure 4.61 presents the illustration of the 

convolution calculation is the “convolution machine” 

proposed by Steven Smith (Smith 2003). As an 

example the calculation of an output impulse y(6) is 

demonstrated. Translation this operation to computer 

algorithm is presented in Figure 4.62. We have fixed 

register with impulse response (filter) coefficients. Data 

of this register is multiplied by the moving register with 

input signal and adding results are transferred do the 

moving register with output data.  

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.62 

The computer algorithm of the convolution operation 
 

The convolution has the following properties (Figure 

4.63) 
 

         y n x n h n h n x n            (4.61) 

           1 2 1 2x n h n h n x n h n h n           (4.62) 

             1 2 1 2h n x n h n x n h n h n x n         

(4.63) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.63 

Properties of the convolution operation 
 

 The calculation of the convolution in the time 

domain can be substituted by the operation in the 

frequency domain. It is especially important in the case 

of deconvolution operation which is very difficult to 

perform in time domain. Both operations can be 

realized in the frequency domain taking into account 

the relationship 
 

   nhnxny )(            fHfXfY     (4.64) 

 

To perform the convolution operation in the 

frequency domain it is necessary: 

- to calculate the Fourier transform of input signal and 

impulse response X(f), H(f) 

- to multiply both transform, 

- return to the time domain by using the inverse Fourier 

transform. 

 Figure 4.64 illustrates the realization of the 

convolution operation in time and frequency domain. 

In the frequency domain we should take into account 

both real and imaginary part of the signal. Thus the 

multiplication of signals in the frequency domain can 

be performed according to the relationships 

 

     fXfHfY                  (4.65) 

         fHfXfHfXfY ImImReReRe 

         fHfXfHfXfY ImReReImIm   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.64 

Realization of the convolution operation in the time domain and the 

frequency domain (after Smith 2003) 
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The deconvolution can be realized in the frequency 

domain as the division operation, according to the 

relationships 

     fXfYfH :                  (4.66) 

 
       
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
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 
       

     22
ImRe

ImReReIm
Im

fXfX

fXfYfXfY
fH




  

 

Both, convolution and deconvolution operations are 

very useful in the image processing.  In this case the 

impulse response is often called as point spread 

function PSF. By using digital filter known also as 

mask or kernel we can change various features of a 

picture: the edges (smoothing or enhancement), 

contrast, color, etc. The deconvolution algorithm is 

very useful for image processing, for example when the 

picture is blurred. When the PSF is unknown or poorly 

determined then special iterative techniques called 

blind deconvolution can be used for the picture 

reconstruction. 

The deconvolution operation can be also used in 

sound processing. We can assume that a virtual filter 

with impulse response hnoise(n) is responsible for the 

noises and interferences. For example if we analyze the 

noisy pause between musical parts of recording we can 

determine such filter parameters. Next we can try to 

remove the noise from the musical record performing 

the deconvolution (asking what is the input signal x(n) 

if we know the output signal y(n) and impulse 

response). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.65 

The sound signal reconstructed after application of the deconvolution 

algorithm (Czyzewski 1998)  
 

Figure 4.65 presents the example of applying of 

deconvolution operation to improve the sound.  In the 

first step, the impulse response of the filter representing 

the original signal was determined for a musical 

instrument (from the Baroque time). Next, this impulse 

response was used for reconstruction of the old, 

disturbed and damaged record. As a result pure sound 

was obtained (without noises and distortion); moreover, 

this reconstruction was not only technical one, but it 

also recovered the musical character of the Baroque 

period. 

Another important digital operation is the correlation 

function, used for the comparison of two signals x1(n) 

and x2(n). The correlation function is described by 

following relation 
 

     






1

0

2112
1

N

n

knxnx
N

kr                (4.67) 

The correlation is a mathematical operation very 

similar to the convolution: 
 

     






k

knhkxny                    (4.68) 

 

By comparing equations 4.67 and 4.68 it is clear that 

only the sign +/- is the difference. Thus although 

convolution and correlations are different functions 

they can be calculated by using similar computer 

algorithm – in example of the “machine” presented in 

Figure 4.64 we only omit the reverse operation of the 

second function. If we compare two signals we 

determine the cross-correlation, and if we compare the 

signal with itself we determine the autocorrelation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.66 

The signal reconstructed after application of the correlation algorithm  

recorded sound signal

the signal after reconstruction

 

signal transmitted

signal received

signal of correlation
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A typical application of correlation function is 

searching for the radar signal covered by noises (Figure 

4.66). Because we know the wave shape of transmitted 

signal it is possible to find it even if the noises are 

larger than the useful signal.  

The autocorrelation function is a best method to test 

the periodicity of the signal – see relationship (2.44). 
 

4.5 Discrete Fourier Transform DFT  

The Discrete Fourier Transform DFT is one of the 

most important operations in digital signal processing. 

-It enables conversion between time and frequency 

domain (as it was presented sometimes the signal 

processing can be easier performed in the frequency 

domain).  

- It is a toll for signal analysis – we can obtain almost 

full information about the signal, including 

determination of Total Harmonic Distortion THD. 

- It is a gate to digital world. If we have series of data 

we can convert them to mathematical digital 

representation. For example the bitmap figure 

representation (of large volume) can be converted to 

two-dimensional Fourier transform. This is a basis for 

image processing in digital tomography [Guy et al 

2005]. 

As it was described earlier the equivalent of 

continuous time Fourier transform: 
 

    j t1
X x t e dt

2










              (4.69) 

 

For a discrete time is a Discrete Time Fourier 

Transform DFTT: 
 

    j n

n

1
X x n e

2








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The summation from infinity is possible theoretically 

for only simple cases therefore we usually limit the 

number of samples to N in a Discrete Fourier 

Transform DFT: 
 

   
2 nkN 1 j

N

n 0

X k x n e
 



          (4.71) 

 

In this way we assume that the discrete signal is 

periodical and the selected samples are a good its 

representation
11

.  

Sometimes the DFT is presented in form: 

                                                
11

 Or we can assume that all samples outside selected range are equal 

to zero. 

 
2 nk

j nknk N
N nW e W




               (4.72) 

 

where coefficient WN = exp(-j2 /N) thus: 
 

 
2 nk

j nknk N
N nW e W




                  (4.73) 

 

The Fourier transform allows the conversion of the 

signal from the time domain to the frequency domain 

and vice versa. Below, are presented the main 

properties of the discrete Fourier transform. 

If x1(n) is represented by the Fourier transform X1(k) 

and accordingly x2(n) by X2(k) then 
 

           kbXkaXkXnbxnaxnx 2121   

 (4.74) 
 

This relation  describes the linearity properties of the 

DFT. 

The DFT is periodic with a period of N also if the 

x(n) is non-periodic.  
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   (4.75) 

 

If the input signal is real then the real part of the DFT 

is an even function and the imaginary part of DFT is an 

odd function. This kind of symmetry is sometimes 

called hermitian symmetry. 
 

       kXkXnxnx  
         (4.76) 

 

If x(n) is an even function then X(k) is also even. If 

x(n) is an odd function then X(k) is also odd. 

Furthermore, if x(n) is real and even than X(k) is real 

and even. And if x(n) is real and odd then X(k) is 

imaginary and odd.  
 

       kXkXnxnx             (4.77) 

 

This relationship describes the symmetry properties 

of DFT. 
 

           kXkXkXnxnxnx 2121   (4.78) 

 

 The relationship (4.78) is very important in DSP, 

because it means that the convolution operation can be 

performed by DFT of both components, then by 

multiplication of the results, and finally, by the inverse 
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transform to the time sequence (circular convolution). 

And inversely we can perform the deconvolution of 

x(n) by transforming it to X(k) and by dividing it by one 

component X1(k).  
 

    
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1
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nx                  (4.79) 

 

The relationship (4.79) known as the Parceval 

theorem states that the energy of the signal in time 

domain is the same as the energy in the frequency 

domain. Thus the time domain representation of the 

signal is fully transformable to the frequency domain if 

the system is linear time invariant. 
 

   kXWmnx km
N             (4.80) 

 

The shift m in the time domain (time delay) is 

equivalent to the multiplication in the frequency 

domain by the component exp(-j m). Thus, the phase 

component of the complex representation is increased 

by  m.  
 

   nxWMkX Mn
N                (4.81) 

 

The shift M in the frequency domain is equivalent 

to the multiplication of the signal in time domain by the 

component exp(-j M). 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.67 

The selection of N samples for Fourier analysis 
 

To select N number of samples it is used time 

window method illustrated in Figure 4.67. We select 

samples by multiplying the signal by the window 

function. For example the rectangular window function 

(presented in Fig. 4.66) is in the form: 
 

0 01 for n n n N
w( n )

0 for other samples

  
 


    (4.82) 

 

where n0 is the starting point of the window and N is 

the number of samples.  

The use of rectangular window causes some 

unwanted effects. The Fourier transform of the 

rectangle signal is described by the equation 
 

 
 

 

sin k N / M
X k

sin k / M




                  (4.83) 

 

where M is the number of samples, and N is the number 

of selected samples in the time window.  
 

The equation (4.83) is called the Dirichlet kernel. For 

usually M=N and for small values of k/M (when sin x 

 x) this equation can be presented in a simplified form 
 

 
sin k

X k
k




                       (4.84) 

 

It means that even if samples in time domain are the 

same value in the frequency domain they are 

modulated by sinc function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.68 

An example of the results of DFT analysis of rectangle window (after 

Lyons 2004) 

 

In Figure 4.68 various components of the results of 

Fourier transform are presented: real and imaginary 

part (see Eq. (4.43)) or modulus and phase: 
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     kXkXkX imre
22            (4.85) 

 
 

 
im

re

X k
k arctg

X k
               (4.86) 

 

If we perform spectral analysis sufficient is to 

present only modulus but generally (for example if we 

analyze impedance) we should take into account 

complex number. From Figure 4.68 results that the all 

components are influenced by the form of window 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 4.69 

An example of the results of DFT analysis for selected 64 samples of 

the signal and the first 32 samples representing the analyzed signal 

 

Figure 4.69 presents the example of the Fourier 

analysis of the selected 64 samples of the signal. The 

result is periodical with period N/2. Due to symmetry 

of obtained results only first 0 – (N/2) samples are 

useful because the remaining samples are meaningless 

(also the samples of negative frequencies do not 

introduce new information).  

If we select series of N samples with sampling period 

Ts: 
 

          ssss TNxTxTxxkTx 1,....,2,,0   (4.87) 
 

as result of Fourier transform we obtain series of N/2 

samples distanced by fs/N: 
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what is illustrated in Figure 4.70. Thus the samples of 

DFT analysis do not represent harmonics but they 

result form the relation fs/N.  If we for example select 

sampling frequency 3200 Hz and number of samples N 

= 32 the distance between X(k) samples is 100 Hz and 

the first harmonics 50 Hz is not represented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.70 

Input and output signal of DFT analysis. 

 

If the sample fs/N corresponds exactly with the 

frequency of harmonics we have synchronous analysis 

and it is represented by one line. But if the harmonics 

does not have representative line in DFT analysis it is 

represented by several spectral lines around the 

frequency nearest to the frequency of the signal. This 

effect of spectral line broadening is called as leakage 

and we have asynchronous analysis. 
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FIGURE 4.71 

The example of spectral representation of the distorted signal for 
synchronous (a) and asynchronous (b) DFT analysis (Matlab 

simulation for fs = 2 kHz, N = 320, A1 = 2V, A2 = 1V, A3 = 0.5V, f1 = 

50 Hz (case a), f1 = 54 Hz (case b))  
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For synchronous analysis the sinc function (see 

Figure 4.68) practically does not influence the result. 

Figure 4.72 presents the example of DFT analysis of 

cosinus function. If the analysis is synchronous then the 

samples correspond exactly to the zero values of side 

lobes and only one spectral line is visible (Figure 

4.72a). But for the asynchronous analysis (what occur 

more often) the positions of the samples can meet 

various places of the side lobes and the leakage is more 

wide (Figure 4.72b). 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
FIGURE 4.72 

The Fourier transform of the cosine function in the case of 

synchronous (a) and asynchronous (b) analysis (after Lyons 2004) 

 

The side lobes appear due to the sharp border of the 

rectangle window. We can reduce the amplitude of the 

side lobes using other shapes of the window, when the 

border is smoother. Figure 4.73 presents the effect of 

applying of the Hanning window described by the 

relationship:  
 

   w n 0.5 0.5cos 2 n / N             (4.89) 

 

We can see that after application of the Hanning 

widow the side lobes have reduced amplitude but at the 

expense of widening the main window. There are 

various kinds of windows: Hanning, Hamming, 

Chebyshev, Keiser, etc. and by choosing a correct 

window it is possible to improve the quality of the 

spectral analysis. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
FIGURE 4.73 

The effect of applying of the Hanning window 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

FIGURE 4.74 

The effect of applying of the Hanning window for synchronous S and 

asynchronous AS case (Smith 2003) 
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Figure 4.74 presents the example of the spectral 

analysis results obtained without and with the 

Hamming window. After use of the Hamming window 

the tails of the spectral line decrease in the case of 

asynchronous analysis, but in the case of synchronous 

analysis the application of the Hamming window 

increases the broadband of the spectral line. 
 

a) 

b) c) 
 
FIGURE 4.75 

The example of synchronous spectral analysis (a), asynchronous with 

rectangel window (b) and asynchronous one with Hanning window (c) 

(Agilent 150 2005) (permission of Agilent) 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
FIGURE 4.76 

The improvement of resolution of DFT analysis by increase of the 

number N of samples  

 

Figure 4.75 presents the comparison of the results of 

the analysis of the same signal. In the synchronous case 

the results are excellent. In the case of asynchronous 

analysis the first line due to leakage practically covers 

the other harmonics. But after application of the 

Hanning window the results of asynchronous analysis 

are significantly improved. Thus during the analysis it 

is important to find (experimentally) the best shape 0of 

the window. 

The resolution of spectral lines depends on the 

relation fs/N. Sometimes if we have small number of 

samples we can improve resolution artificially by 

adding some zero samples as it is presented in Figure 

4.76. 

The computation of the N-point Fourier transform 

requires huge number complex multiplication 

operations. Thus, the calculation of the Fourier 

transform is not a trivial task even for fast processors, 

because the time of computations practically excludes 

this analysis in the real time systems. The turning point 

was the invention of Cooley and Tukey (Cooley 1965). 

They proposed a special algorithm allowing faster 

Fourier transform calculation. This algorithm with 

some modifications is used currently in the Fourier 

analysis and is called FFT – Fast Fourier Transform. 

By applying the FFT analysis it is possible to decrease 

the number of multiplication from 2
N
 to 0.5 Nlog2N. 

For example to realize the 1024-sample DFT it is 

necessary to perform 1 048 576 multiplication 

operations and 1 047 552 addition operations, while the 

FFT analysis requires in such a case only 5 120 

multiplications (around 200 times less than in the DFT) 

and 10 240 additions (around 100 times less). 

The FFT algorithm profits from the symmetry and 

periodicity of Fourier transform to increase the 

computational efficiency by diminishing the number of 

operations. The DFT equation is divided into two parts, 

even and odd sequence  
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(4.90) 
 

The factor 
kn
NW , known as the twiddle factor, 

appears in both parts of the equation and it is sufficient 

to be computed just once. Moreover, there are only four 

different values of this factor and there is no need to 

compute them so many times. The computation of N-

point transform is a rather difficult, therefore the 

sequences described by Eq. (4.90) are decomposed into 

several sub-sequences finishing on the two-point DFT. 

The flow-graph of this algorithm is presented in Figure 

4.77. 
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FIGURE 4.77 

The flow-graph of the decimation-in-time 8-point FFT algorithm 

(Mitra 2003) 

  

The calculation of two-point transform is relatively 

simple and for example the first transform from Figure 

4.77 can be expressed as: 
 

  )4()0()( 22

1

0

0000 xWxWnxkX knk

n




  (4.91) 

 

This two-point DFT consisting of one multiplication 

and two additions can be expressed by the butterfly 

flow-graph presented in Figure 4.78. 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.78 

The butterfly operation of the two-point DFT 

 

The decomposition of the data sequence can be 

performed in the time domain (decimation-in-time) or 

in the frequency domain (decimation-in frequency). 

Figure 4.77 presents the example of the flow-graph of 

the decimation-in-time FFT algorithm for N=8. By 

using such algorithm it is possible to determine the 8-

point DFT by applying 24 multiplication operations.  

The FFT algorithms are described in detail 

elsewhere (Bracewell 1999, Chu 2000, James 2002, 

Mitra 2002, Sneddon 1995). Most of these algorithms 

required to provide 2
N
 samples. If there is a smaller 

number of samples it is recommended to complete 

them by supplementing the samples by the appropriate 

number of zero samples. 

Currently, tools for computing the FFT (and Inverse 

Fast Fourier Tansform – IFFT) are available in ready-

to-use form in many computing platforms (for example 

in MatLab or LabVIEW), many measuring instruments 

are equipped with FFT (for example digital 

oscilloscopes). The calculation of the FFT is possible 

using scientific calculators or spreadsheets (for 

example MS Excel).  

It is important to note that FFT algorithm is not a 

simplification of DFT analysis – it is a method of 

simply calculation of DFT. The results of calculation of 

both FFT and DFT should be the same.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.79 

Substitution of bitmap picture by vector picture by means of FFT. 

 

In analysis of electrical signal FFT analysis is usually 

performed as one-dimensional x(t)  X(F) form. But 

in image processing, for example computer 

tomography [Kak and Slaney 1988] the two- ond three-

dimensional Fourier analysis plays a crucial role 

because it enables to convert huge bitmap picture to 

small vectorial form, easy next to process. The two-

dimensional DFT can be described as [Kak and Slaney 

1988]: 
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(4.92) 

while inverse DFT is: 
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The relationship (4.92) can be presented as: 
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1 1 2
F u,v f m,n exp j nv

M N N

2
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 
 

(4.94) 

Thus the equation in square brackets is one-

dimensional transform representing mth row. We can 

compute two-dimensional DFT by representing each 

row by its one-dimensional transforms and next by 

calculation transforms of each column. 

It is required that the transform should be reversible. 

This means that we should be able to reconstruct the 

primary time varying signal from the frequency 

spectrum – for example using the Inverse Fourier 

Transform. But Fourier transform is correct only for 

stationary signals – signals not varying in the time or 

the frequency. We only obtain the information on 

which frequency component exists in the signal and not 

how it varies. Thus it would be not possible to recover 

music passage as presented in Figure 4.80 because it 

varies in frequency but also in time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.80 

Music signal as a function of time and frequency. 

 

Important limitation of the Fourier transform is that 

this operation is off-line. We need to collect data, insert 

to memory and next compute it. Fortunately modern 

signal processing devices are very fast and we are able 

to compute also real time FFT.  

The digital FFT usually requires certain time for 

analysis of the packet of samples and during this time 

incoming samples can be unavailable for analysis. To 

avoid losing the data between the ADC and FFT 

devices a time buffer can be inserted (Figure 4.81). The 

time buffer should be dynamically fitted to the time of 

analysis, which depends on the frequency span. 

Sometimes, for very short signals the time buffer can 

be substituted by several overlapping buffers, as shown 

in Figure 4.81b. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.81 

The time buffer for real time FFT analysis. 

 

To analysis of non-stationary signals can be used 

special Fourier Transform called the time-dependent 

Fourier transform or Short-time Fourier Transform 

STFT. In this transform the time window of the 

analyzed signal is shifted in time – the analyzed signal 

is multiplied by shifted time window function (Moving 

Window Method – MWM). Thus, the non-stationary 

signal can be further reconstructed by the results of 

STFT distributed in time.   

The short Fourier time is expressed by the equations:  
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FIGURE 4.82 

The result of analysis of human voice performed with Short Time 

Fourier Transform (Rak 2004). 
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 The function w(m) is the function of the time 

window. The results of the time/frequency analysis can 

be presented as a 3D picture. Usually it is presented as 

the frequency/time F(t) 2D picture called a spectrogram 

– sometimes supplemented by the x(t) and X(F) 

dependence – as presented in Figure 4.82.  

 

4.6 Digital filters 

In comparison to the analogue filters described 

earlier (built from the RC elements and the amplifiers) 

the digital filters exist mainly as computer programs 

(thus they are some kind of virtual instruments) – 

although, there are digital filters available in the form 

of integrated circuits. The digital filters can be easily 

modified by the software, including also the possibility 

of the alteration of the parameters during the filter 

operation, in special kinds of filters, called adaptive 

filters. The performance of the filter does not depend 

on the quality of RC elements, but some hardware 

factors can limit their implementation (organization of 

the memory, speed of the processor etc).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.83 

The analog RC low-pass filter and its digital equivalent. 

 

The digital filters (as the analogue ones) should 

exhibit relatively flat characteristics in the passband, 

the transition band should be as narrow as possible, the 

filter should be linear (without the phase distortions), 

and the step response in time should be fast and 

without overshoot. Additionally, it is recommended to 

apply the optimal design (relatively simple), taking into 

account the necessary time and number of numerical 

operations. A correctly designed digital filter has a 

performance of filtering much better than its analogue 

counterpart. 

Figure 4.83 presents the digital equivalent of analog 

filter – the function of RC elements is realized by 

shifting z
-1

 part. By comparing this digital circuit with 

Figure 4.61 it can be easy observed that to receive the 

digital filter the operation of convolution should be 

performed (shifting, multiplying and adding). By 

increasing number of shifting-multiplying-adding 

operators we can increase order of filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.84 

The example of the FIR filter. 

 

In the filter presented in Figure 4.84 the response 

depends only on the input signal – this filter is without 

the feedback. This filter is called the Finite Response 

Filter FIR or non-recursive filter. 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 4.85 

The example of the IIR filter. 
 

By applying of the feedback we can improve 

performances of the filter. In the filter presented in 

Figure 4.85 the response depends not only on the input 

signal, but also on the output signal due to the 

feedback. Therefore, such filters are called recursive 

filters or Infinite Response Filters IIR. 

The FIR filters are simpler in design and since they 

are without feedback there is no problem with the 

stability of the filter. The IIR filters, due to the 

feedback exhibit better steepness of the filter frequency 

characteristic in the transition band. This enable to 
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design the filters with a lower number of the multiplier 

elements and therefore such filters can be faster and 

less demanding for the processing power and memory 

requirements. The main drawback of recursive filters is 

the danger that they can be unstable. It is necessary to 

perform analysis of the stability conditions – mainly 

the position of the poles in the z-plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.86 

The comparison of amplitude and phase characteristics of 5
th

 order 

FIR and IIR filters [Lyons 2004]. 

 

Figure 4.86 presents the comparison of the frequency 

characteristics of recursive and non-recursive digital 

filters. IIR filter exhibits better amplitude characteristic 

(more steepness, less ripples) although FIR filter has 

better phase linearity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.87 

Two examples of the FIR filters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.88 

Two examples of the IIR filters. 
 

As the digital filter realizes the convolution operation 

it can be described by the relationships: 

- in time domain 
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- or in frequency domain 
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The transmittance of a digital filter is described by 

the dependence 
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The samples with coefficients b(k) are the feedback 

samples, while the samples with coefficients a(k) are 

the input samples. In the case of FIR filter the 

coefficients b(k) = 0 and the transmittance is expressed 

by:  
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or by the relationship 
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The characteristic of the filter is explicitly described 

by its impulse response h(n) called also the filter 

kernel. Therefore the sequence of coefficients h(n) (or 

a and b coefficients in equations 4.98-4.100) are also 

called the filter coefficients.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.89 

Rectangular window in time domain and corresponding signal in 

frequency domain. 
 

In analysis of DFT presented in previous section it 

was observed that if we select the samples in the form 

of rectangular window the output signal was 

represented by the relation X(k)  sinx/x. We can invert 

this relation and ask which time window of the input 

impulses of the filter guarantees that the output impulse 

sequence is represented by the rectangular window 

(thus close ideal output of the filter).  

It can be expected if the pulse response form sinx/x 

relation than the response in the frequency domain is 

the same as the frequency response of the ideal filter. 

Due to limited number of samples in the impulse 

response we can only approximate the sinx/x relation. 

The higher the order of the digital filter, the better is 

the frequency characteristic (close to the rectangular 

one). But even a large number of coefficients of the 

impulse response do not guarantee that the response is 

rectangular with the flat part in the pass-band. There 

are always oscillations in passband and stopband called 

Gibbs phenomenon (Figure 4.90).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.90 

Impulse response and frequency output of the filter of 51 and 101 

order (Lai 2004. 
 

Similarly as in the case of DFT operation we can 

weaken of the effect of rectangular window by 

changing its shape (mainly borders). Various windows 

have been proposed  - Blackman, Keiser, Chebyshev 

etc. Figure 4.91 presents an example of application of 

Blackman window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.91 

The impulse response of the filter with the Blackman window. 
 

The application of the Blackman window decreases 

the ripples in the frequency characteristic, but at the 

expense of the steepness of this characteristic (Figures 
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4.92 and 4.93). Very useful are the Keiser and 

Chebyshev windows, because such windows enable 

shaping of the window by appropriate choice of the 

window coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.92 

The transfer characteristic of the filer after applying of the Blackman 

Window [Lyons 2004]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.93 

The gain response of the filters with various fixed windows [Mitra 

2002]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.94 

Design of 2
nd

 order digital filter by Matlab tools (amplitude and phase 

characteristics, input and output signals, zeros and poles). 
 

We can design of the digital filters considering all 

remarks presented in the Section devoted to analog 

filters. Thus we can design Butterworh, Bessel, Cauer 

or Chebyshev filyters. There are developed various 

methods of design of digital filters (Thede 2004, 

Winder 2002). Because procedures of design of 

analogue filters are very well developed, sometimes it 
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is reasonable to design an appropriate analogue filter 

and then to convert it into digital one. There are tools 

enabling conversion between analogue and digital 

techniques, for example the bilinear transformation 

from the s-plane to the z-plane 
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FIGURE 4.95 

Design of 5
th

 order digital filter by Matlab tools 

On the market there are available professional 

software for filter design as well as free programs on 

the Internet. Also, programming platforms, like 

LabVIEW offer user-friendly tools for filter realization. 

Developed tools for filter design are also available in 

MatLab (Jackson 1995, Lutovac 2000).  

Figures 4.94 and 4.95 present the examples of the 

digital filters design by using the Matlab tools
12

. This 

design was performed for following assumption: useful 

signal 50 mV and 10 Hz, disturbed by interference 15 

mV and 50 Hz and noise 10 mV. Sampling was 

performed with sampling frequency 1 kHz for 400 

samples. We would like to design the FIR filter 

fulfilling conditions: 

- distortion in pass-band less than 0.1 dB Vpp, 

- attenuation in stop-band better than 40 dB. 

Assuming that as the filer we use the elliptic one to 

obtain values of coefficients a and b we can use the 

command [B,A] = ellip[nf, rp, rs, fzn, low], where nf –s 

an order of the filer, rp is the level of ripples in the 

pass-band, rs is the attenuation of the stop-band, fzn is 

the cutoff frequency and low means that it is low-pass 

filter. 

After calculation we obtain coefficients of the filer:  

A=[1.000  -4.765  9.106  -8.724  4.190  - 0.807] 

B=[0.003  -0.010  0.007  0.007  -0.010  0.003] 
 

Poles of the filter are: 

R=[-1,00 0.96+i0.27 0.96 –i0.27 0.98+i0.18 0.98-i0.19] 
 

thus all poles are inside the unit circle and the filter is 

stable. 
 

Zeros of the filter are: 
 

Z=[0.98+i0.13 0.98-i0.13 0.94=i0.09 0.94-i0.09 0.92] 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 
FIGURE 4.96 

Algorithm of the operation of the filter. 

                                                
12

 These examples have been prepared by Slawomir Baranowski. 
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The results of simulation are presented in Figures 

4.94 and 4.95. The filter of the second order not 

sufficiently removes noise and distortion but the filter 

of fifth order is stable and effectively removes 

interferences. 

The algorithm of the operation of the filter is 

presented in Figure 4.96. We have two registers with 

data coefficients and two moving registers with input 

and output data. It is necessary to multiply the 

appropriate coefficient by the data and next to add the 

results and write sample to output register. 

Digital filters can be realized practically in all 

computers equipped with a data acquisition board. The 

digital signal processors DSP in comparison with usual 

microcontrollers are equipped with a special module 

MAC (multiplier/accumulator) suitable for digital filter 

realization. The manufacturers of DSP usually enclose 

suitable Application Notes enabling design of the 

digital filter – an example is Application Note No. 

SPRA669 published by Texas Instruments for digital 

signal processor TMS320C54x. 
 

 
 

 

 

 

 

 

 

 
FIGURE 4.97 

The mathematical operations in digital filtering process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.98 

The CALU unit. 

 

According to the circuit presented in Figure 4.97 it is 

necessary to perform operations: 
 

n n 0 n 1 1

2 N 1 1 N

y ( x C ) ( x C ) ...

( x C ) ( x C )





    

   
       (4.102) 

Figure 4.98 presents the CALU module performing 

MAC operation (multiplication and summation) in one 

clock cycle. To perform such a filtering operation it is 

convenient to use a circular buffer in which newly 

acquired sample replaces the oldest sample in the 

memory (Figure 4.99). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.99 

The filtering operation with MAC unit. 

 

Figure 4.100 presents the comparison of analog and 

digital filters. Steven Smith (Smith 2003) has compared 

two low-pass filters: analogue six pole Chebyshev filter 

with 1 kHz cut-off frequency and digital filter with 

sampling frequency 10 kHz and 128 samples in the 

time window. The analogue filter was constructed 

using 3 op-amps, 12 resistors and 6 capacitors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.100 

Comparison of frequency characteristics of analog and digital filters 

[Smith 2003] 
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FIGURE 4.101 

Comparison of time characteristics of analog and digital filters [Smith 

2003] 

 

The comparison of both filters without doubt 

indicated that the digital filter is much better. Its 

characteristic is flat in the pass-band while for the 

analogue filter 6% ripples are detected. In digital filter 

we can observe 100 dB attenuation of the signal in the 

transition band between 1 kHz and 2 kHz while in 

analogue filter such effect is for about 4.5 kHz. Also 

the time response of digital filter is more linear and 

with smaller overshoot. 

However, in this comparison Smith also pointed out 

several advantages of the analogue filters. The first 

advantage is the speed – to obtain fast digital filter 

large sampling frequency is required while an analogue 

filter can operate without problems up to about 1 MHz.  

Also the amplitude dynamics of the analogue filter 

can be better. In 12-bit ADC the quantization noise is 

0.29 LSB for 4095 bits which results in dynamics of 

about 14·10
3
. In comparison, the dynamics of a typical 

op-amp is about 10·10
6
. The frequency range of an op-

amp is between 0.01 Hz and 100 kHz which is about 

seven decades. To obtain the same frequency range in a 

digital filter for the sampling frequency 200 kHz it is 

necessary to process 20 million samples.  

Important advantage of digital filters is possibility to 

change their parameters by software – practically in on-

line mode. This possibility is used in special kind of 

filters – adaptive filters. 

By applying digital filters it is possible to obtain 

much more complex transfer characteristics in 

comparison with analog filters. For example we can 

easy realize comb filters commonly used in digital TV 

for separation of luminance and chrominance signal. 

Ana example of such filter is presented in Figure 4.102. 

 

 

 

 

 

 

 

 

 
FIGURE 4.102 

Digital comb filter. 

 

Digital filters are commonly used to reject noises and 

interferences form the useful signal (see Figure 4.95). 

One of the most frequently used averaging digital filter 

is the moving average filter. This filter calculates the 

average value from the sample and M neighboring 

samples – it averages the samples in the window 

around the sample. Thus it performs the following 

operation 
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iy                (4.103) 

 

The value M can be selected that M previous samples 

or M next samples are used, but the best results are for 

the samples around the processed sample (M/2 previous 

samples and M/2 next samples). Figure 4.103 presents 

the examples of moving averaging results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.103 

The rejection of noises by application of moving average filter (Smith 

2003). 
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The averaging filters are very useful for the 

improvement of the images affected by noises. The 

moving average filter calculates the average value of 

the pixel and neighboring pixels, for example from the 

3  3 area as demonstrated in Figure 4.104a. The area 

used for averaging can be of various values and shapes 

(not necessary the square one). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.104 

The principle of averaging (a) and median (b) filter. 

. 

Sometimes better results can be obtained with the 

median filter. The median value is a value calculated in 

such a way, that 50% of samples are larger than 

processed sample and 50% of samples are smaller. 

Practically, the median value is calculated as follows: 

the samples are ordered from smallest one to the 

largest, and next the central value is selected (Figure 

4.104b).  
 

a) b) 

  
 
FIGURE 4.105 

The improvement of the image quality of the noisy picture (a) by 

applying of the median filter (b) (Young 1998) (permission of Ian T. 
Young) 

The median value is more efficient in noise rejection 

because extreme values of the samples are rejected (in 

the case of average filter this samples influence the 

processed value). Moreover, the median filters in better 

way improve the sharp edges in the picture, while the 

average filters smooth the edges. Figure 4.105 presents 

two examples of the picture improvement after 

application of the appropriate filter.  

Digital filters are especially useful in digital image 

processing. Most off tool available in programs as 

Photoshop use the digital filters. 

 

4.7 Digital measuring instruments 

As the digital measuring instrument we do not mean 

the instruments where the pointer is substituted by the 

digital display but the instrument where most of the 

operations of signal processing are performed digitally 

(Rathore 2004). In some areas digital measuring 

instruments have practically replaced analogue ones. 

For example portable, universal measuring instruments 

(Figure 4.106) are available everywhere with prices 

comparable to analogue ones but with performances 

much better. Similarly precise voltmeters, ammeters, 

ohmmeters (multimeters) have practically supplanted 

the analogue instruments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.106 

An example of digital portable multimeter 

 

105 100 120

100 120

103 100 120

105+100+120+100+103+120+103+100+120

9

a)

100,100,100,103,103,105,120,120,120

108

105 100 120

100 120

103 100 120

b)

103

 

 



Handbook of Electrical Measurements                                                                                                     147 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.107 

The functional block diagram of typical digital measuring instrument 

 

Figure 4.107 presents the block diagram of a typical 

digital instrument. The input circuit contains the 

conditioning circuits: voltage dividers or amplifiers for 

measuring the voltage in various ranges, shunt resistors 

for current measurement, supply source for resistance 

measurement, DC/AC converters. The example of a 

typical input circuit of a digital multimeter is presented 

in Figure 4.108. 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.108 

The input circuit of typical digital measuring instrument 

 

Usually in the case of DC measurements the input 

circuit is separated by the capacitor. Therefore AC and 

DC measurements are performed separately and the 

resultant value is determined according to the formula 

(2.77). On certain instruments it is indicated (usually as 

“AC+DC”) that it is possible to measure both 

components of the signal. To measure the AC values in 

the input circuit is inserted AC/DC converter. If this 

converter calculates the rms value of the AC input 

signal often such instrument is indicated as “True rms”.  

The logic circuit controls all functions of the 

instrument: automatic change of the input ranges (in 

certain instruments), triggering of the measuring cycle, 

control of ADC, saving the data into memory, etc. 

Sometimes the instrument saves a certain number of 

last measurement results and these data can be 

transmitted through available interface. More 

expensive measuring instruments are equipped with 

Ethernet interface, cheaper ones with serial interface 

RS232 or USB. The interface enables not only to 

transmit the data to other external devices (including 

computer) but also allows controlling the instrument by 

the external computer system (for example change of 

the ranges or functions). 

A group of manufacturers have developed a standard 

command set (language) facilitating the users to control 

the measuring process. The standard of commands is 

known as SCPI – Standard Commands for 

Programmable Instruments. It was assumed that this 

standard should be user friendly (written in the text 

mode) and can be delivered to the measuring 

instrument by any interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.109 

SCPI instrument model 

 

The SCPI model of measuring instrument is 

presented in Figure 4.109. The inscriptions in each 

block describe most important operations: 

- INPut command controls the signal conditioning: 

input impedance (:IMPedance), gain (:GAIN), filtering, 

attenuation or other input operations; 

- SENSe command describes range, resolution, type of 

the signal; 

- CALCulate describes processing of measured data, for 

example calculation of the rms value; 

- OUTput command defines the parameters of the 

output signal; 

- SOURce describes signal parameters, such as 

frequency, power, modulation; 

- TRIGger determines the method of synchronization; 

- MEMory manages the saving procedures; 

- DISPlay describes the method of presentation of the 

data. 

The structure of commands is hierarchical – the 

command is followed by the more detailed 

subcommand, as presented in Figure 4.110. 
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FIGURE 4.110 

The example of hierarchical command tree 

 

The commands are separated by colons. The blank 

space separates the parameter from the command and a 

semicolon separates commands within the same 

subsystem. For example the command 
 

SENS:VOLT:AC:RANG 5 
 

means the measurement of the AC voltage in the 

measuring range 5V. In the case of 
 

CONF:VOLT:DC 100,0.01; READ? 
 

the voltmeter is configured as the 100V DC voltmeter 

with resolution 0.01V and the result of the 

measurement is transferred to the buffer.  

The braces enclose the parameter choice while the 

vertical bar separates multiple parameter choices, for 

example 
 

VOLT:DC:RANG {<range > |MIN|MAX} 
 

Most available measuring instruments are capable of 

receiving and processing the SCPI commands and 

detailed command syntax is described in the User 

Guides for each particular device.  

Typically digital multimeters enable the 

measurements of voltage, current, resistance, often also 

frequency. Sometimes the measurement of capacity is 

possible as well. In very cheap instruments capacity is 

measured as the impedance – voltage drop on the tested 

capacity fed by alternating voltage. It is also possible to 

measure directly capacity. Figure 4.111 presents two 

examples of the input circuits designed for capacity 

measurement. In both circuits the measuring process is 

divided into two cycles: in the first one (switch in 

position 1) the measured capacitor is charged from the 

voltage source Uref connected by the resistance R. In the 

second cycle (switch in position 2) the capacitor is 

discharged. 

 In the first circuit (Figure 4.111a) measured 

capacity is proportional to the charge Q and  

 

ref
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ref U

idt

U

Q
C


 0                         (4.104) 

 

 Thus in the output of the integrating circuit the 

signal is proportional to the measured capacity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.111 

The example of input circuits for capacity conversion to voltage 

 

 In the second circuit (Figure 4.111b). 5.133b) the 

measured voltage across the capacitor increases 

exponentially 
 

 RCt
refc eUU /1                     (4.105) 

 

After a time equal to the time constant  = RC this 

voltage reaches value 0.632 Uref. If the voltage Uc is 

connected to the one input of the comparator and to the 

second input is connected to voltage 0.632 Uref then the 

comparator closes the gate after the time equal to the 

time constant. Thus we obtain conversion of the 

measured capacity into the time period. If to the gate is 

connected to a reference oscillator the digital counter 

directly indicates the measured capacity. 

Most of digital multimeters use the dual-slope 

converters because they use DC voltmeter and long 

time of conversion is no problem. Advantage of the 

dual-slope (integrating) converter is very high accuracy 

and resolution. Moreover this device is insensitive to 

the interference of frequency corresponding with 
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integrating time (most often it is 50 Hz interference). 

Recently dual-slope converters are often supplanted by 

delta-sigma converters. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.112 

The laboratory multimeter type HP 34401 of Agilent 

 

Figure 4.112 presents one of the most popular digital 

multimeters, HP 34001 of Agilent. This instrument 

enables measurements of voltages, currents (both DC 

and AC), resistances and frequencies with uncertainty 

of about 0.004% DC and 0.1% AC. In the case of 

measurements of AC values the instrument operates as 

a DC voltmeter with AC rms/ DC converter. It is also 

possible to determine a maximal (peak) value of the 

input signal.  

Table 4.5 presents a comparison of typical 

performacnes of digital multimeters. 

 
TABLE 4.5 

The performances of typical portable, laboratory and precision 

multimeters. 

Type 

Model 

Manufacturer 

Portable 

179 

Fluke 

Laboratory 

34411 

Agilent 

Precision 

2002 

Keithley 

Number of 

digits 

3 ¾ 

 

6 ½ 

 

8 ½ 

 

Measure V, I, R , 
C ,F ,T 

V, I, R, 
C, f, T 

V, I, R, 
f 

Uncertainty 

DC [%] 

0.09+2 0.0015+0.004 

 

0.0006+ 

0.00008 
Uncertainty 

AC [%] 

frequency 
bandwidth 

speed [rdg/s] 

memory 
[rdg] 

interface 

1+3 

 

45 Hz – 
 1 kHz 

0.02+0.02 

 

3 Hz – 
 300 kHz 

1000/s 

1 000 000 
 

LXI, GPIB, USB 

0.02+0.01 

 

1 Hz –  
2 MHz 

2000/s 

30 000 
 

GPIB 

    

 

Another operating principle is used in the 

time/frequency measurements (electronic counters). 

Figure 4.113 presents the block diagrams of the 

frequency meters (Figure 4.113a) or period meters 

(Figure 4.113b). In the case of frequency meter the 

triggering input circuit converts the measured signal to 

the rectangle waveform and starts counting. The signal 

of the standard quartz oscillator after frequency 

division opens the gate for a precisely set period of 

time. The number of pulses counted in this time period 

is a direct the measure of frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.113 

Digital measurement of the frequency (a) or period (b) 

 

For the low frequency signal the gate should be open 

for a long time to obtain sufficient resolution (sufficient 

number of counts). Therefore, for low frequency 

signals it is better to substitute the frequency 

measurement by the period measurement. The input 

signals of the gate are reversed. The measured signal 

opens the gate for the period or multiple of periods. 

The pulses of standard oscillator are counted as the 

measure of the period. Typical frequency meters enable 

also to measure width of the pulse, phase shift and 

time. 

General purpose digital multimeters measure voltage, 

current, resistance, frequency, sometimes capacity. To 

measure other electrical parameters as impedance, 

inductivity, power, energy it is necessary to use more 

specialized meters. On the market is available a huge 

number of various specialized digital measuring 

instruments of different performances and often with 
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not clearly explained principle of operation. For these 

measurements area available: 

- impedance analyzers, RLC meters 

- wattmeters, energy meters 

- power quality analyzers, 

- spectrum analyzers, 

- sources of signals. 

Often in such digital instruments the input circuit is 

analogue one and only A/D converter is added at the 

end. For example to detect electric power an analog 

multiplier can be used or for impedance analysis the 

synchronous detector is useful. Especially it is 

reasonable when we use introductory sensor with 

feedback. In fully digital instruments in such case 

would be necessary to use additional D/A converter 

(introducing additional inaccuracy) [Cerman and 

Ripka, 2003].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.114 

Two circuits for I-V method of impedance measurement 

 

Due to complex procedure of obtaining the balance 

the bridge circuits earlier commonly used to impedance 

measurements are more often substituted by 

current/voltage I-V method (Figure 4.114). The voltage 

drops on the resistor R and impedance Zx are measured 

and next the impedance is calculated: 
 

1

x

2

V
Z R

V
                               (5.95) 

 

To calculate ratio V1/V2 simply analogue multiplier 

can be used and next by using synchronous detector 

both components of impedance can be determined (by 

using as a reference voltage Vsint and Vcost 

signals).  

Instead of using a voltage drop on resistance R the 

current-to-voltage converter can be used (Figure 

4.114b). For high frequencies the current-to-voltage 

converter can be substituted by more sophisticated 

circuit consisting of phase detector and integrator 

[Agilent 2009].  

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.115 

Digital impedance converter – model AD5933 of Analog Devices 

 

Figure 4.115 presents fully digital impedance 

analyzer. The device under test DUT is fed by internal 

oscillator. Direct Digital Synthesis DDS technique 

enables to establish frequency with sub-Hertz 

precision. Signal from current-to-voltage amplifier is 

converted to digital form and next Discrete Fourier 

Transform DFT is calculated. Knowing voltage it is 

possible to determine both real and imaginary part of 

tested impedance: 
 

2 2Magnitude Re Im                  (4.106a) 

 1Phase tan Im/ Re                   (4.106b) 

 

The system accuracy is 0.5% in frequency range up 

to 100 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.116 

Power to voltage converter using the analog multiplier 
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Similarly in the power and energy measurements 

there are two strategies of digital measurement – hybrid 

one with analog multiplier connected to digital 

converter or fully digital. The first one uses power to 

voltage converters and next there are connected typical 

digital devices. Figure 4.116 presents the power-to-

voltage converter using the analog multiplier device.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.117 

Power and energy converter – model ADE7757 of Analog Devices 

 

Figure 4.117 presents the IC all-digital power and 

energy converter. Two input signals after analog-to-

digital conversion (delta-sigma 16-bit 450 kHz) are 

digitally multiplied and at the output there is signal 

proportional to the power. The frequency output is 

adapted for electromechanical counters and 2-phase 

stepper motors. The uncertainty of conversion is 0.1% 

for power and 0.1 for phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.118 

The active and apparent power and energy converter – model ADE7763 of 

Analog Devices 

 

 Figure 4.118 presents the enhanced version of IC 

energy and power converter. This circuit is 

supplemented by two rms converters and an additional 

multiplier. Due to this add-on elements it is possible to 

determine also apparent power and energy (VA power), 

as well as rms values of current and voltage. It is also 

possible to determine the period (frequency) of the 

voltage signal. The circuit is equipped with two outputs 

– the frequency one for energy counters and a serial 

one for communication with computer measuring 

systems.  

An interesting extra element is the integrator in one 

of the channels. This integrator enables the converter to 

cooperate with inductive sensor of current (for example 

Rogowski coil) where the output signal is proportional 

to dI/dt. 

In XXI century started new technology of generation, 

transmission and distribution of electrical power known 

as smart grid [Massoud Amin and Wollenberg 2005, 

Akanayake et al 2012, Momoh 2012]. In smart grid 

technology the power distribution is controlled and 

managed in intelligent way using computer tools. Of 

course to introduce such technology the new measuring 

devices are indispensable. To control and analyze of 

power quality are now commonly used power quality 

analyzers. In consumers area the old induction type 

watt-meters are now not acceptable because it is not 

possible to read and transmit information about power 

and energy consumption. Electromechanical energy 

meters are now substituted by computerized smart 

meters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.119 

An example of the power quality analyzer – three phase energy and power 

quality analyzer  model 437 of Fluke (permission of Fluke Company) 

 

Figure 4.119 presents an example of the power 

quality analyzer developed by Fluke. This instrument 
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enables to measure and register main parameters as 

voltage, current, power (active and reactive), phase 

shift, distortion, crest factor, waveforms etc. But 

moreover it investigates and stores information about 

all important events as flickers, dips and swells of 

voltage. Figure 4.120 present an example of screen 

with bar presentation of monitoring of rms voltage, 

distortion, flickers, dips, interruptions, rapid changes, 

swells, unbalance and frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.120 

An example of the screen with power quality monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.120 

An example of the screen with loss calculation 

It is also possible to analyze the measured data – 

Figure 4.121 presents an example of intelligent energy 

loss calculator analyzing wasted kilowatt hours per 

year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.122 

An example of smart meter instrument (permission of Efergy) 

 

The full introduction of smart meters it is a very 

complex operation taking into account the number of 

devices to replacements and problems of development 

of communication infrastructure. It is expected that till 

2020 most of energy consumers should use such 

meters. The main difference of smart meters in 

comparison with other digital energy meters is the 

possibility to gathering and remote reporting the data to 

central system of delivery of the energy. Also the 

private consumer is able to analyze energy 

consumption as it is presented in Figure 4.122.  

 

4.8 Digital synthesis – source of signals 

Digital signal processing used for analysis of the 

signals can be also used for the synthesis of the signal. 

The most important development of this technique is 

visible in high quality sound processing. Most of the 

audio components are equipped with digital sound 

processor DSP enabling sophisticated processing of the 

sound (for example supplementing the sound with 

artificial reverberation). On the market there are 

available various sound synthetizers. Most personal 

computers are equipped with a sound board or a chip 

enabling the software processing and creating of the 

sound.  

There are also available digital instruments for 

numerically controlled signal generation. Recently, the 

most popular are three systems: PLL – phase locked 
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loop, DDS – direct digital synthesis and AWG – 

arbitrary wave generators. 

The PLL system is used for very accurate control of 

frequency of the generated signal. It is used in radio 

communication systems (including radio broadcasting) 

as very precise tuned generator. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.123 

The principle of PLL frequency synthesis 

 

The principle of the PLL synthesis is presented in 

Figure 4.123. The output signal fout is compared with 

precise frequency of the quartz oscillator fref. As the 

comparing device the phase frequency detector PFD is 

used to convert the difference of frequencies to the 

voltage. This voltage is used to control the voltage 

controlled oscillator VCO. The value of the output 

frequency is set by the change of parameters of the 

frequency divider. The precise setting of the output 

frequency is guaranteed by the feedback. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.124 

The example of PFD device 

 

As the simplest phase-frequency detector a XOR type 

gate can be used – in such a gate the output signal is 

equal to zero when both inputs are the same (Figure 

4.124). In PLL systems also more sophisticated PFD 

circuits are used, so called PFD type II modules, in 

which the output signal is proportional to the phase 

shift between slopes of two impulses. Usually, an 

oscillator with the varicap type diode is used as the 

voltage controlled oscillator. An example of the VCO 

circuit is presented in Figure 3,37. 

There are available integrated circuits of VCO 

devices as well as the whole PLL systems. As an 

example in Figure 4.125 is presented the PLL circuit 

type CD4046 of Texas Instruments. This device can 

work as the PLL oscillator and as a voltage controlled 

oscillator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.125 

The example of PLL device – model CD4046 of Texas Instruments 

 

The PLL synthesis is performed in the frequency 

domain. It is also possible to perform the signal 

synthesis in the time domain by the DDS system. The 

direct digital synthesis enables to generate the signal 

with synthesis of the frequency as well of the wave 

shape. The principle of operation of DDS system is 

presented in Figure 4.126. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.126 

The principle operation of the DDS synthesis 
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The DDS system generates the sine wave with the 

frequency depending on the clock frequency and binary 

number – tuning word M at the input. To generate a 

fixed frequency sine wave phase increment, which is 

determined by tuning word, is added to the phase 

accumulator with each clock cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.127 

The phase circle of the DDS system 

 

The phase accumulator acts as a phase wheel 

presented in Figure 4.127. The sine-wave oscillation 

can be considered as the vector rotation around the 

phase circle and each point of the circle corresponds to 

equivalent point of the wave. One revolution of the 

vector around the phase wheel means the full sine wave 

cycle. In the n-bit accumulator the wheel can be 

divided into 2
n
 points. Thus for 32-bit register we 

obtain the resolution of phase equal to 4 294 967 296 

points around the wheel. 

In the phase accumulator with every pulse of the 

clock generator the pointer in the wheel is moved by 

the binary coded input word M. The output frequency 

is determined by the M word (see Figure 4.127). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.128 

The signal synthesis in the DDS system 

The amplitude of the output signal is formed by the 

phase to amplitude converter related to the data 

registered in the RAM memory (Figure 4.128). 

The arbitrary wave generator AWG is often used as 

the source of signals of precise adjusted frequency, 

phase and amplitude waveform. The principle of 

operation of AWG is presented in Figure 4.129. The 

user stores the waveform data in the memory and 

according to the clock signal desired signal is then 

reconstructed sample by sample and transferred to the 

DAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.129 

The principle of operation of the arbitrary wave generator 

 

Also the DDS system can operate as the waveform 

generator. An example of the arbitrary wave generator 

utilizing the direct digital synthesis DDS is presented in 

Figure 4.130. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.130 

The DDS system used as the arbitrary wave generator 

 

The arbitrary wave signal is programmable and can 

be realized from device memory as well as from an 

external device or computer via a suitable interface. 
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4.9 Digital storage oscilloscopes DSO 

The first oscilloscopes were introduced more than 

hundred years ago by Ferdinand Braun
13

 in 1897. And 

until now, these instruments are one of the most 

important tools in engineering and scientific research. 

And more – with the era digital instruments many new 

possibilities appeared. 

Modern digital oscilloscopes allow not only 

displaying the signals, but also recording, analyzing 

them (for example performing of the spectral analysis) 

and also appreciating measurements of the signals 

(Kularatna 2003). LCD digital instruments practically 

replaced old analog cathode ray tube CRT 

oscilloscopes (also called cathode ray oscilloscopes 

CRO). 

If the frequency of the signal is larger than several 

Hz due to the inertia of our eyesight it is not possible to 

see such picture of the signal. Therefore the main 

function of the oscilloscope is to somehow stop the 

picture on the screen. Due to trigger function the 

oscilloscope instrument creates the illusion that the 

picture is standing still. We say that the investigated 

signal is synchronized with the frequency of horizontal 

movement.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.131 

The principle of displaying of the signal in analog oscilloscope 

 

Figure 4.131 illustrates the principle of displaying 

the signal in analog oscilloscope. The picture on the 

screen is obtained in such a way that during the 

horizontal movement the luminous point is deflected 

vertically proportionally to the value of the detected 

signal. The horizontal movement is obtained by the 

sweep oscillator generating a sawtooth signal (Figure 

4.131). If the period of oscillation of the sawtooth 

signal is the same (or multiple) as the period of 

investigated signal the successive pictures appear to be 

the same. This creates the illusion that the picture is 

                                                
13

 Braun was awarded the Nobel Prize in Physics in 1009 with Marconi for 

wireless telegraphy. 

standing still. Of course during them return path the 

moving point is nonvisible  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.132 

The principle of synchronization of the tested signal with period of the 

horizontal movement  in analog oscilloscope 

 

Figure 4.132 presents the principle of 

synchronization of the investigated signal. The 

sawtooth voltage is initiated by the pulse from 

triggering system. In the simplest case of the automatic 

trigger mode this start can occur for the zero value of 

signal – it is important to start every time in precisely 

defined point of signal, because only in such case we 

can obtain standing picture on the screen.  

Of course it is possible to set manually the moment 

of triggering – for example for defined value or for 

rising or falling slope (trigger level and trigger slope). 

This moment of start can be observed directly on the 

screen as the initial point of the signal. The user can 

manually change the frequency of time base in order to 

observe one or more periods of investigated signal. 

Synchronization is rather easy when the investigated 

signal is periodical – it is sufficient if the period of 

horizontal movement is the same or multiple of the 

period of investigated signal amd start of horizontal 

movement is still for the same point of investigated 

signal (in most of oscilloscopes is button known as 

AutoScale). 

More complex is the case when investigated signal is 

periodical but with short pulse time in comparison with 

the period time of the whole signal (Figure 4.133a) or 

when it is a single pulse (Figure 4.133b). In such case 

the trigger mode of synchronization is very helpful. 

The trigger circuit is connected to the source of trigger 

signal – this can be either internal or external source. 

The sweep generator controlled by trigger system starts 

t
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exactly in defined point, often in initial point of the 

investigated signal. It is possible to set additionally the 

hold-off time when the trigger system does not start 

again. The triggering mode can be periodical (for 

example in the case presented in Figure 4.133a) or a 

single sweep mode (single event mode) - for example 

in the case presented in Figure 4.133b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.133 

The triggering of pulse signals – periodic pulses (a) and single pulse (b) 

 

In the single event mode the sawtooth signal is 

composed from only one tooth – this means that the 

luminous spot is traveling through the screen 

horizontally only once. This mode is very convenient to 

observe non-periodical signals, for example single 

pulses.  

In the case of digital storage oscilloscopes it is not 

necessary to generate sawtooth signal to force 

horizontal movement – this movement is governed by 

clock signal. Moreover signal is sampled, converted by 

ADC and transmitted to memory as a record of certain 

number of samples. This record is next processed by 

microcontroller into the picture. Thus we can trigger 

start point off-line in any sample of the collected 

signal. But principle of synchronization is the same – if 

we demand to obtain stable picture the start point and 

frequency of horizontal movement should be adjusted 

to the investigated signal. 

Modern oscilloscopes offer many quite sophisticated 

modes of triggering – not only slope and level but by 

well-defined event: glitsch, pulse width or start bit of 

frame in serial interface signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.134 

Block diagram of typical digital oscilloscope) 

 

Figure 4.134 presents the block diagram of a typical 

digital oscilloscope. We can notice in this diagram 

similar functions as were present in the analog 

instruments: triggering circuit and horizontal/vertical 

position logic. Although there are significant 

differences of the operation principle of digital and 

analog oscilloscope, the manufactures take into account 

certain tradition and equip the digital instrument with 

very similar functions as were in the analogue 

instruments. 

The main difference between the digital and analog 

oscilloscope results from storage of data after 

acquisition. We can process signal saved in memory, 

we can present it on the screen in any moment (not 

only in real-time). It does not mean that digital 

oscilloscopes are fully off-line devices – process of 

acquisition is very fast, often thousands times per 

second.  

The storage function enables not only simple 

recording and reproduction of signals, due to the digital 

processing oscilloscopes are equipped with various 
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additional functions, such as FFT analysis, averaging 

function, integration of the signal, measurement of the 

value and frequency of the signal, etc (Hickman 1997, 

Kularatna 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.135 

Planar (a) and cross-sectional view (b) of matrix addressed in LCD [Sarma 

2004] 

 

Figure 4.135 presents the design of typical LCD 

screen used in digital oscilloscopes. Liquid crystal 

material consists of rod shaped molecules that can be 

ordered by electrostatic field. The display is divided in 

small areas called pixels, each of which is driven by an 

individual electrode. Pixels are organized in the matrix 

with scanning/row electrodes for horizontal movement 

control and data/column electrodes for vertical 

movement control. In the simplest case these electrodes 

are driven in passive way, but to obtain better 

parameters the Active Matrix Addressing AMLCD is 

used. In the active system each pixel is driven by thin 

film transistor TFT connected to two capacitors for 

voltage storage. If a system of filter is added, then it is 

possible to obtain colored LCD monitor. 

Figure 4.136 presents the example of the screen of 

digital oscilloscope. It is important for user that every 

time this picture can be sent to printer or saved as a 

graphic file. Important advantage is that easy it is 

possible to obtain multicolor picture of investigated 

signals. Beside the picture of the signals part of the 

screen is reserved for presentation of data, as for 

example horizontal and vertical scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.136 

The sample of the screen of digital oscilloscope 

 

In digital sampling oscilloscope every column in the 

screen can be represented by a sample (the position in 

the column by value of the signal). The simplest way to 

obtain such picture is to convert investigated signal into 

the set of samples according to the clock impulses 

(Figure 4.137). This kind of sampling is called 

sequential sampling. We can save this sampling result 

in memory and then reproduce the signal “sample by 

sample” on the screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.137 

The signal before and after sequential sampling 

 

In the input circuit apart from conventional 

attenuators/amplifiers there should be inserted a 

sample-and-hold circuit and an anti-alias filter. This 

filter is very important, because if the frequency of 

sampling is too small due to the aliasing effect the 
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processor can fit to the sample an incorrect signal (as 

illustrated in Figure 4.138). The observer will see the 

signal of other frequency than frequency of correct 

signal (continuous and dashed lines in Figure 4.138).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.138 

The aliasing effect in digital oscilloscope 

 

One of the important problems of digital 

oscilloscopes is a presence of a dead (blind) time zone. 

If some event, for example very short pulse appears 

between the samples it can be not detected or detected 

in false way. Figure 4.139 presents the signal 

interpretation for two different positions of the rise 

slope. Depending on the pulse placement (with respect 

to the sampling pulses) we can obtain various results – 

for the pulse a we approximate the slope by the A line, 

while for the pulse b by the B line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.139 

The interpretation of short pulse 

 

 Placement of pulse b exactly in the same time as 

the sampling pulse results in the interpretation of the 

rise time as the 1.6 Ts. This is the most disadvantageous 

case. Thus the shortest detectable rise time is 

s
sr

f
Tt

6.1
6.1                       (4.107) 

 

Thus it is obvious that to obtain short dead zone the 

sampling frequency should be as high as possible. 

Microcontroller is also used to perform interpolation of 

detected signal from the samples. We can say that the 

higher the sampling frequency the easier it is to 

reconstruct the signal because we have more samples. 

It is assumed that the useful storage bandwidth USB 

depends on the sampling frequency 
 

C

f
USB s                           (4.108) 

 

where C = 2.5 – 25 is the coefficient depending on the 

method of wave interpolation. When we do not 

interpolate the wave (the shape is reconstructed from 

the sampled points) the coefficient C = 25. When the 

points are connected by line (linear interpolation) it is 

assumed that C = 10 guarantee correct reconstruction. 

When we interpolate the sampling results by the sine 

wave, C = 2.5 is sufficient. But we can use the sine 

interpolation only when we are sure that the 

investigated signal is close to a sine wave (for the 

rectangle pulses the error of sine wave interpolation 

can be significant). 

Thus in digital oscilloscopes the sampling frequency 

is a very crucial parameter to obtain satisfying 

performances. But from chapter 4.2 results that the 

fastest analog-to-digital converters have the sampling 

frequency not higher than 1.5 GHz
14

. In the meantime 

signals of modern technique exceed frequency 20 GHz. 

And such requirements are fulfilled – the best 

oscilloscope of Tektronix model DSA73304D exhibits 

frequency bandwidth as high as 33 GHz and time rise 9 

ps with sampling frequency 50 GS/s – 1TS/s (!)
15

. 

There are certain tricks enabling to obtain such high 

sampling frequency of ADC. First of all in analog to 

digital converters there are two time consuming 

processes – sampling and quantization. In digital 

oscilloscopes these both processes can be performed 

separately – sampling rate can be very high, the record 

can be transmitted to memory and next more slowly 

converted to digit.   

Another commonly used technique is increasing the 

number of samples by multiple-point random sampling 

(or random equivalent time sampling) in which the 

                                                
14

 The fastest 6 Bit ADC of Rockwell Scientific model RAD008 

enables sampling with frequency 4 Gb/s.  
15

 Similarly Agilent oscilloscope model DSAX96204Q exhibits 

frequency bandwidth 63 GHz with sampling rate 160 GS/s. 
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same signal is sampled several times with randomly 

shifted samples (Figure 4.140). In such technique very 

important is to reference the sampled wave to the 

trigger point. In this technique instead of one AD 

converter for sampling the dozen parallel connected 

converters can be used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.140 

Random equivalent time sampling technique enabling increase of the 

effective sampling rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4.141 

Sequential  equivalent time sampling technique enabling reconstruction of 

periodic signal for small number of samples (per period) 

 

Another technique enabling signal reconstruction 

even for one sample per period (below Nyquist-Shanon 

requirements), known as sequential equivalent time 

sampling is presented in Figure 4.141. Every trigger 

pulse is shifted by precise fixed time increment versus 

previous pulse. In this way each time other point of 

signal is sampled. Knowing the time increment it is 

possible to reconstruct the signal. This method can be 

used only for periodic signals. 

Very high frequency bandwidth can be obtained in 

special oscilloscopes known as Digital Sampling 

Oscilloscopes. In these oscilloscopes the position of 

attenuator/amplifier and ADC are reversed – the 

investigated signal is first connected to analog to digital 

converter. In this way to amplifier is connected signal 

of much lower frequency than input signal. Of course 

such oscilloscopes have limed value of input signal.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.142 

The parallel processing of the signal in Digital Phosphor Oscilloscope 

 

The dead zone can be significantly decreased by 

increase of the waveform capture ratio expressed by 

number of acquired records per second. To increase 

this parameter to even thousand per second the special 

architecture known as Digital Phosphor Oscilloscope 

was developed. In this oscilloscope (Figure 4.142) the 

signal is bypassing the microprocessor. This way the 

snapshots of the signal are sent directly to the display 

without stopping the acquisition. The observer obtains 

on the screen “normally” processed signal of higher 

light intensity and parallel sent signals of lower color 

intensity. The name of this oscilloscope refers to the 

analog chemical phosphor luminance of prolonged time 

of lighting (afterglow). This way displayed signal is 

three-dimensional: time, amplitude and history 

(distribution even single random short events in time). 

Oscilloscopes are not just tools designed for 

observation the signals. The setting parameters time 

base and vertical deflection are scaled in sec/div or 

volts/div, respectively. Thus it is easy to calculate the 

value of the signal (for example the value of 

magnitude) or value of the time (for example to 

determine the phase shift between two signals or 

frequency of the signal). Thus the oscilloscope is a 

complete measuring device, especially valuable in the 

high frequency range. Moreover modern oscilloscopes 

can directly indicate most important parameters of the 

signal. 
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FIGURE 4.143 

The XY mode of operation of oscilloscope used for: determination of the 

diode characteristic (a) or for determination of the hysteresis loop (b) 

 

Usually the oscilloscope displays the time varying 

signals, thus the horizontal axis is the time axis. But it 

is also possible to connect another signal to the 

horizontal deflection system. In such mode of operation 

we can display on the screen the function Y=f(X). 

Figure 4.143 presents two examples of X-Y operation. 

In the first example, the signal proportional to the 

current (voltage drop on the resistor) is applied to the 

vertical axis while the signal proportional to the voltage 

on the diode is connected to the horizontal axis. Thus 

we obtain the characteristic I=f(U) of the diode on the 

screen of oscilloscope.  

The second example (Figure 4.143b) illustrates the 

possibility of investigating the hysteresis loop (B-H 

loop). To the horizontal axis the signal proportional to 

the magnetic field strength (that is proportional to the 

magnetizing current) is connected while to the vertical 

axis the signal proportional to the flux density (the 

voltage E induced in the winding after integration, 

because E = f(dB/dt)) is used. Thus we can observe the 

B=f(H) loop on the screen. 

Figure 4.144 presents typical digital oscilloscope. On 

the front panel are visible typical switches and buttons 

for acquisition channels, for time base and for trigger 

part. Usually digital oscilloscopes use extended screen 

menu. Even very sophisticated devices can be not very 

large.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.144 

The example of typical digital oscilloscope 

 

The LCD screen enables to construct even portable, 

battery fed oscilloscopes. Very useful solution is to 

joint both function – oscilloscope and digital 

multimeter in one device – as it is presented in Figure 

4.145. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.143 

The portable instrument joining function of multimeter and oscilloscope – 

ScopoMeter of Fluke (permission of the Fluke Corporation) 

 

Recently it is possible to design even very complex 

digital instruments by applying data acquisition board 

DAS and commonly available software, as for example 

LabView. Thus the market of manufacture prepared 

instruments has alternative. But there are some 

advantages of commercially available measuring 
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devices. In the case of digital oscilloscopes especially 

for high frequency important is also appliance – 

exclusively prepared probes, high frequency resistors in 

the input attenuator or specifically designed AD 

converters.   

Commercially available digital measuring 

instruments, as for example multimeters usually have 

certificate with detailed described and guarantee 

accuracy. In the case of self-made instruments, we can 

also estimate accuracy taking into account the accuracy 

of data acquisition board DAS but in the case of 

problems or conflicts with customer only certificate of 

reputable manufacturer is really valid. 
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